本文整理汇总了Python中lsst.sims.photUtils.Sed.calcMag方法的典型用法代码示例。如果您正苦于以下问题:Python Sed.calcMag方法的具体用法?Python Sed.calcMag怎么用?Python Sed.calcMag使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类lsst.sims.photUtils.Sed
的用法示例。
在下文中一共展示了Sed.calcMag方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _calcColors
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import calcMag [as 别名]
def _calcColors(self, sedname='C.dat'):
"""
Calculate the colors for a moving object with sed 'sedname'.
"""
# Do we need to read in the LSST bandpasses?
try:
self.lsst
except AttributeError:
filterdir = os.getenv('LSST_THROUGHPUTS_BASELINE')
filterlist = ('u', 'g', 'r', 'i', 'z', 'y')
self.lsst ={}
for f in filterlist:
self.lsst[f] = Bandpass()
self.lsst[f].readThroughput(os.path.join(filterdir, 'total_'+f+'.dat'))
self.vband = Bandpass()
self.vband.readThroughput('harris_V.dat')
self.colors = {}
# See if the sed's colors are in memory already.
if sedname not in self.colors:
moSed = Sed()
moSed.readSED_flambda(sedname)
vmag = moSed.calcMag(self.vband)
self.colors[sedname] = {}
for f in filterlist:
self.colors[sedname][f] = moSed.calcMag(self.lsst[f]) - vmag
return self.colors[sedname]
示例2: testMagListForSedList
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import calcMag [as 别名]
def testMagListForSedList(self):
"""
Test that magListForSedList calculates the correct magnitude
"""
nBandpasses = 7
bpNameList, bpList = self.getListOfBandpasses(nBandpasses)
testBpDict = BandpassDict(bpList, bpNameList)
nSed = 20
sedNameList = self.getListOfSedNames(nSed)
magNormList = self.rng.random_sample(nSed)*5.0 + 15.0
internalAvList = self.rng.random_sample(nSed)*0.3 + 0.1
redshiftList = self.rng.random_sample(nSed)*5.0
galacticAvList = self.rng.random_sample(nSed)*0.3 + 0.1
# first, test on an SedList without a wavelenMatch
testSedList = SedList(sedNameList, magNormList,
fileDir=self.sedDir,
internalAvList=internalAvList,
redshiftList=redshiftList,
galacticAvList=galacticAvList)
magList = testBpDict.magListForSedList(testSedList)
self.assertEqual(magList.shape[0], nSed)
self.assertEqual(magList.shape[1], nBandpasses)
for ix, sedObj in enumerate(testSedList):
dummySed = Sed(wavelen=copy.deepcopy(sedObj.wavelen),
flambda=copy.deepcopy(sedObj.flambda))
for iy, bp in enumerate(testBpDict):
mag = dummySed.calcMag(bpList[iy])
self.assertAlmostEqual(mag, magList[ix][iy], 2)
# now use wavelenMatch
testSedList = SedList(sedNameList, magNormList,
fileDir=self.sedDir,
internalAvList=internalAvList,
redshiftList=redshiftList,
galacticAvList=galacticAvList,
wavelenMatch=testBpDict.wavelenMatch)
magList = testBpDict.magListForSedList(testSedList)
self.assertEqual(magList.shape[0], nSed)
self.assertEqual(magList.shape[1], nBandpasses)
for ix, sedObj in enumerate(testSedList):
dummySed = Sed(wavelen=copy.deepcopy(sedObj.wavelen),
flambda=copy.deepcopy(sedObj.flambda))
for iy, bp in enumerate(testBpDict):
mag = dummySed.calcMag(bpList[iy])
self.assertAlmostEqual(mag, magList[ix][iy], 2)
示例3: returnMags
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import calcMag [as 别名]
def returnMags(self, bandpass=None):
"""
Convert the computed spectra to magnitudes using the supplied bandpasses,
or, if self.mags=True, just return the mags in the LSST filters
If mags=True when initialized, return mags returns an structured array with
dtype names u,g,r,i,z,y.
"""
if self.mags:
if bandpass:
warnings.warn('Ignoring set bandpasses and returning LSST ugrizy.')
mags = -2.5*np.log10(self.spec)+np.log10(3631.)
# Mask out high airmass
mags[self.mask] *= np.nan
# Convert to a structured array
mags = np.core.records.fromarrays(mags.transpose(),
names='u,g,r,i,z,y',
formats='float,'*6)
else:
mags = np.zeros(self.npts, dtype=float)-666
tempSed = Sed()
isThrough = np.where(bandpass.sb > 0)
minWave = bandpass.wavelen[isThrough].min()
maxWave = bandpass.wavelen[isThrough].max()
inBand = np.where((self.wave >= minWave) & (self.wave <= maxWave))
for i, ra in enumerate(self.ra):
# Check that there is flux in the band, otherwise calcMag fails
if np.max(self.spec[i, inBand]) > 0:
tempSed.setSED(self.wave, flambda=self.spec[i, :])
mags[i] = tempSed.calcMag(bandpass)
# Mask out high airmass
mags[self.mask] *= np.nan
return mags
示例4: calcColors
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import calcMag [as 别名]
def calcColors(sedname='C.dat'):
# Calculate SSO colors.
filterdir = os.getenv('LSST_THROUGHPUTS_BASELINE')
filterlist = ('u', 'g', 'r', 'i', 'z', 'y')
lsst ={}
for f in filterlist:
lsst[f] = Bandpass()
lsst[f].readThroughput(os.path.join(filterdir, 'total_'+f+'.dat'))
vband = Bandpass()
vband.readThroughput('harris_V.dat')
csed = Sed()
csed.readSED_flambda(sedname)
vmag = csed.calcMag(vband)
dmags = {}
for f in filterlist:
dmags[f] = csed.calcMag(lsst[f]) - vmag
return dmags
示例5: get_mags
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import calcMag [as 别名]
def get_mags(self,source, phase ):
sed = Sed()
print "==========================================="
print phase
print "==========================================="
if phase > -20 and phase < 50 :
sourceflux = source.flux(phase=phase, wave=self.rband.wavelen*10.)
sed.setSED(wavelen=self.rband.wavelen, flambda=sourceflux/10.)
else:
sed.setSED(wavelen=self.rband.wavelen, flambda=flambda)
#sed.redshiftSED(redshift=_z[i], dimming=True)
return [sed.calcMag(bandpass=self.uband),
sed.calcMag(bandpass=self.gband),
sed.calcMag(bandpass=self.rband),
sed.calcMag(bandpass=self.iband),
sed.calcMag(bandpass=self.zband)]
示例6: testSignalToNoise
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import calcMag [as 别名]
def testSignalToNoise(self):
"""
Test that calcSNR_m5 and calcSNR_sed give similar results
"""
defaults = LSSTdefaults()
photParams = PhotometricParameters()
m5 = []
for i in range(len(self.hardwareList)):
m5.append(
snr.calcM5(
self.skySed,
self.bpList[i],
self.hardwareList[i],
photParams,
seeing=defaults.seeing(self.filterNameList[i]),
)
)
sedDir = lsst.utils.getPackageDir("sims_sed_library")
sedDir = os.path.join(sedDir, "starSED", "kurucz")
fileNameList = os.listdir(sedDir)
numpy.random.seed(42)
offset = numpy.random.random_sample(len(fileNameList)) * 2.0
for ix, name in enumerate(fileNameList):
if ix > 100:
break
spectrum = Sed()
spectrum.readSED_flambda(os.path.join(sedDir, name))
ff = spectrum.calcFluxNorm(m5[2] - offset[ix], self.bpList[2])
spectrum.multiplyFluxNorm(ff)
magList = []
controlList = []
magList = []
for i in range(len(self.bpList)):
controlList.append(
snr.calcSNR_sed(
spectrum,
self.bpList[i],
self.skySed,
self.hardwareList[i],
photParams,
defaults.seeing(self.filterNameList[i]),
)
)
magList.append(spectrum.calcMag(self.bpList[i]))
testList, gammaList = snr.calcSNR_m5(
numpy.array(magList), numpy.array(self.bpList), numpy.array(m5), photParams
)
for tt, cc in zip(controlList, testList):
msg = "%e != %e " % (tt, cc)
self.assertTrue(numpy.abs(tt / cc - 1.0) < 0.001, msg=msg)
示例7: calcMagNorm
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import calcMag [as 别名]
def calcMagNorm(self, objectMags, sedObj, bandpassDict, mag_error = None,
redshift = None, filtRange = None):
"""
This will find the magNorm value that gives the closest match to the magnitudes of the object
using the matched SED. Uses scipy.optimize.leastsq to find the values of fluxNorm that minimizes
the function: ((flux_obs - (fluxNorm*flux_model))/flux_error)**2.
@param [in] objectMags are the magnitude values for the object with extinction matching that of
the SED object. In the normal case using the selectSED routines above it will be dereddened mags.
@param [in] sedObj is an Sed class instance that is set with the wavelength and flux of the
matched SED
@param [in] bandpassDict is a BandpassDict class instance with the Bandpasses set to those
for the magnitudes given for the catalog object
@param [in] mag_error are provided error values for magnitudes in objectMags. If none provided
then this defaults to 1.0. This should be an array of the same length as objectMags.
@param [in] redshift is the redshift of the object if the magnitude is observed
@param [in] filtRange is a selected range of filters specified by their indices in the bandpassList
to match up against. Used when missing data in some magnitude bands.
@param [out] bestMagNorm is the magnitude normalization for the given magnitudes and SED
"""
import scipy.optimize as opt
sedTest = Sed()
sedTest.setSED(sedObj.wavelen, flambda = sedObj.flambda)
if redshift is not None:
sedTest.redshiftSED(redshift)
imSimBand = Bandpass()
imSimBand.imsimBandpass()
zp = -2.5*np.log10(3631) #Note using default AB zeropoint
flux_obs = np.power(10,(objectMags + zp)/(-2.5))
sedTest.resampleSED(wavelen_match=bandpassDict.wavelenMatch)
sedTest.flambdaTofnu()
flux_model = sedTest.manyFluxCalc(bandpassDict.phiArray, bandpassDict.wavelenStep)
if filtRange is not None:
flux_obs = flux_obs[filtRange]
flux_model = flux_model[filtRange]
if mag_error is None:
flux_error = np.ones(len(flux_obs))
else:
flux_error = np.abs(flux_obs*(np.log(10)/(-2.5))*mag_error)
bestFluxNorm = opt.leastsq(lambda x: ((flux_obs - (x*flux_model))/flux_error), 1.0)[0][0]
sedTest.multiplyFluxNorm(bestFluxNorm)
bestMagNorm = sedTest.calcMag(imSimBand)
return bestMagNorm
示例8: test_stars
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import calcMag [as 别名]
def test_stars(self):
obs = ObservationMetaData(bandpassName=['c_u', 'c_g'], m5=[25.0, 26.0])
db_dtype = np.dtype([('id', np.int),
('raJ2000', np.float),
('decJ2000', np.float),
('sedFilename', str, 100),
('magNorm', np.float),
('galacticAv', np.float)])
inputDir = os.path.join(getPackageDir('sims_catUtils'), 'tests', 'testData')
inputFile = os.path.join(inputDir, 'IndicesTestCatalogStars.txt')
db = fileDBObject(inputFile, dtype=db_dtype, runtable='test', idColKey='id')
cat = CartoonStars(db, obs_metadata=obs)
with lsst.utils.tests.getTempFilePath('.txt') as catName:
cat.write_catalog(catName)
dtype = np.dtype([(name, np.float) for name in cat.column_outputs])
controlData = np.genfromtxt(catName, dtype=dtype, delimiter=',')
db_columns = db.query_columns(['id', 'raJ2000', 'decJ2000', 'sedFilename', 'magNorm', 'galacticAv'])
sedDir = os.path.join(getPackageDir('sims_sed_library'), 'starSED', 'kurucz')
for ix, line in enumerate(next(db_columns)):
spectrum = Sed()
spectrum.readSED_flambda(os.path.join(sedDir, line[3]))
fnorm = spectrum.calcFluxNorm(line[4], self.normband)
spectrum.multiplyFluxNorm(fnorm)
a_x, b_x = spectrum.setupCCM_ab()
spectrum.addDust(a_x, b_x, A_v=line[5])
umag = spectrum.calcMag(self.uband)
self.assertAlmostEqual(umag, controlData['cartoon_u'][ix], 3)
gmag = spectrum.calcMag(self.gband)
self.assertAlmostEqual(gmag, controlData['cartoon_g'][ix], 3)
umagError, gamma = calcMagError_m5(umag, self.uband, obs.m5['c_u'], PhotometricParameters())
gmagError, gamma = calcMagError_m5(gmag, self.gband, obs.m5['c_g'], PhotometricParameters())
self.assertAlmostEqual(umagError, controlData['sigma_cartoon_u'][ix], 3)
self.assertAlmostEqual(gmagError, controlData['sigma_cartoon_g'][ix], 3)
示例9: test_mags_vs_flux
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import calcMag [as 别名]
def test_mags_vs_flux(self):
"""
Verify that the relationship between Sed.calcMag() and Sed.calcFlux()
is as expected
"""
wavelen = np.arange(100.0, 1500.0, 1.0)
flambda = np.exp(-0.5*np.power((wavelen-500.0)/100.0,2))
sb = (wavelen-100.0)/1400.0
ss = Sed(wavelen=wavelen, flambda=flambda)
bp = Bandpass(wavelen=wavelen, sb=sb)
mag = ss.calcMag(bp)
flux = ss.calcFlux(bp)
self.assertAlmostEqual(ss.magFromFlux(flux)/mag, 1.0, 10)
self.assertAlmostEqual(ss.fluxFromMag(mag)/flux, 1.0, 10)
示例10: testMagDictForSed
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import calcMag [as 别名]
def testMagDictForSed(self):
"""
Test that magDictForSed calculates the correct magnitude
"""
wavelen = numpy.arange(10.0,2000.0,1.0)
flux = (wavelen*2.0-5.0)*1.0e-6
spectrum = Sed(wavelen=wavelen, flambda=flux)
for nBp in range(3, 10, 1):
nameList, bpList = self.getListOfBandpasses(nBp)
testDict = BandpassDict(bpList, nameList)
self.assertFalse(len(testDict.values()[0].wavelen)==len(spectrum.wavelen))
magDict = testDict.magDictForSed(spectrum)
for ix, (name, bp) in enumerate(zip(nameList, bpList)):
magControl = spectrum.calcMag(bp)
self.assertAlmostEqual(magDict[name], magControl, 5)
示例11: computeMags
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import calcMag [as 别名]
def computeMags(self, bandpass=None):
"""After the spectra have been computed, optionally convert to mags"""
if self.mags:
mags = -2.5*np.log10(self.spec)+np.log10(3631.)
else:
mags = np.zeros(self.npts, dtype=float)-666
tempSed = Sed()
isThrough = np.where(bandpass.sb > 0)
minWave = bandpass.wavelen[isThrough].min()
maxWave = bandpass.wavelen[isThrough].max()
inBand = np.where( (self.wave >= minWave) & (self.wave <= maxWave))
for i, ra in enumerate(self.ra):
if np.max(self.spec[i,inBand]) > 0:
tempSed.setSED(self.wave, flambda=self.spec[i,:])
# Need to try/except because the spectra might be zero in the filter
# XXX-upgrade this to check if it's zero
mags[i] = tempSed.calcMag(bandpass)
return mags
示例12: returnMags
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import calcMag [as 别名]
def returnMags(self, bandpasses=None):
"""
Convert the computed spectra to a magnitude using the supplied bandpass,
or, if self.mags=True, return the mags in the LSST filters
If mags=True when initialized, return mags returns an structured array with
dtype names u,g,r,i,z,y.
bandpasses: optional dictionary with bandpass name keys and bandpass object values.
"""
if self.azs is None:
raise ValueError('No coordinates set. Use setRaDecMjd, setRaDecAltAzMjd, or setParams methods before calling returnMags.')
if self.mags:
if bandpasses:
warnings.warn('Ignoring set bandpasses and returning LSST ugrizy.')
mags = -2.5*np.log10(self.spec)+np.log10(3631.)
# Mask out high airmass
mags[self.mask] *= np.nan
mags = mags.swapaxes(0, 1)
magsBack = {}
for i, f in enumerate(self.filterNames):
magsBack[f] = mags[i]
else:
magsBack = {}
for key in bandpasses:
mags = np.zeros(self.npts, dtype=float)-666
tempSed = Sed()
isThrough = np.where(bandpasses[key].sb > 0)
minWave = bandpasses[key].wavelen[isThrough].min()
maxWave = bandpasses[key].wavelen[isThrough].max()
inBand = np.where((self.wave >= minWave) & (self.wave <= maxWave))
for i, ra in enumerate(self.ra):
# Check that there is flux in the band, otherwise calcMag fails
if np.max(self.spec[i, inBand]) > 0:
tempSed.setSED(self.wave, flambda=self.spec[i, :])
mags[i] = tempSed.calcMag(bandpasses[key])
# Mask out high airmass
mags[self.mask] *= np.nan
magsBack[key] = mags
return magsBack
示例13: calcWDColors
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import calcMag [as 别名]
def calcWDColors():
"""
Calculate a few example WD colors. Values to go in stellarMags(). Here in case
values need to be regenerated (different stars, bandpasses change, etc.)
"""
try:
from lsst.utils import getPackageDir
import os
from lsst.sims.photUtils import Bandpass, Sed
except:
'Need to setup sims_photUtils to generate WD magnitudes.'
names = ['HeWD_25200_80', 'WD_11000_85', 'WD_3000_85']
fns = ['bergeron_He_24000_80.dat_25200.gz',
'bergeron_10500_85.dat_11000.gz', 'bergeron_2750_85.dat_3000.gz']
wdDir = os.path.join(getPackageDir('sims_sed_library'), 'starSED/wDs/')
files = [os.path.join(wdDir, filename) for filename in fns]
# Read in the LSST bandpasses
bpNames = ['u', 'g', 'r', 'i', 'z', 'y']
bps = []
throughPath = os.path.join(getPackageDir('throughputs'), 'baseline')
for key in bpNames:
bp = np.loadtxt(os.path.join(throughPath, 'filter_' + key + '.dat'),
dtype=list(zip(['wave', 'trans'], [float] * 2)))
tempB = Bandpass()
tempB.setBandpass(bp['wave'], bp['trans'])
bps.append(tempB)
# Read in the SEDs and compute mags
mags = []
for filename in files:
star = Sed()
star.readSED_flambda(filename)
singleMags = [star.calcMag(band) for band in bps]
mags.append([singleMags[i - 1] - singleMags[i] for i in range(1, 6)])
for maglist, fn, name in zip(mags, fns, names):
format = (name, fn) + tuple(maglist)
print("['%s', '%s', %f, %f, %f, %f, %f]" % format)
示例14: testSignalToNoise
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import calcMag [as 别名]
def testSignalToNoise(self):
"""
Test that calcSNR_m5 and calcSNR_sed give similar results
"""
defaults = LSSTdefaults()
photParams = PhotometricParameters()
m5 = []
for i in range(len(self.hardwareList)):
m5.append(snr.calcM5(self.skySed, self.bpList[i],
self.hardwareList[i],
photParams, FWHMeff=defaults.FWHMeff(self.filterNameList[i])))
sedDir = os.path.join(lsst.utils.getPackageDir('sims_photUtils'),
'tests/cartoonSedTestData/starSed/')
sedDir = os.path.join(sedDir, 'kurucz')
fileNameList = os.listdir(sedDir)
rng = np.random.RandomState(42)
offset = rng.random_sample(len(fileNameList))*2.0
for ix, name in enumerate(fileNameList):
if ix > 100:
break
spectrum = Sed()
spectrum.readSED_flambda(os.path.join(sedDir, name))
ff = spectrum.calcFluxNorm(m5[2]-offset[ix], self.bpList[2])
spectrum.multiplyFluxNorm(ff)
for i in range(len(self.bpList)):
control_snr = snr.calcSNR_sed(spectrum, self.bpList[i],
self.skySed,
self.hardwareList[i],
photParams, defaults.FWHMeff(self.filterNameList[i]))
mag = spectrum.calcMag(self.bpList[i])
test_snr, gamma = snr.calcSNR_m5(mag, self.bpList[i], m5[i], photParams)
self.assertLess((test_snr-control_snr)/control_snr, 0.001)
示例15: testMagError
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import calcMag [as 别名]
def testMagError(self):
"""
Make sure that calcMagError_sed and calcMagError_m5
agree to within 0.001
"""
defaults = LSSTdefaults()
photParams = PhotometricParameters()
# create a cartoon spectrum to test on
spectrum = Sed()
spectrum.setFlatSED()
spectrum.multiplyFluxNorm(1.0e-9)
# find the magnitudes of that spectrum in our bandpasses
magList = []
for total in self.bpList:
magList.append(spectrum.calcMag(total))
magList = numpy.array(magList)
# try for different normalizations of the skySED
for fNorm in numpy.arange(1.0, 5.0, 1.0):
self.skySed.multiplyFluxNorm(fNorm)
m5List = []
magSed = []
for total, hardware, filterName in zip(self.bpList, self.hardwareList, self.filterNameList):
seeing = defaults.seeing(filterName)
m5List.append(snr.calcM5(self.skySed, total, hardware, photParams, seeing=seeing))
magSed.append(snr.calcMagError_sed(spectrum, total, self.skySed, hardware, photParams, seeing=seeing))
magSed = numpy.array(magSed)
magM5 = snr.calcMagError_m5(magList, self.bpList, numpy.array(m5List), photParams)
numpy.testing.assert_array_almost_equal(magM5, magSed, decimal=3)