本文整理汇总了Python中lsst.sims.photUtils.Sed.resampleSED方法的典型用法代码示例。如果您正苦于以下问题:Python Sed.resampleSED方法的具体用法?Python Sed.resampleSED怎么用?Python Sed.resampleSED使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类lsst.sims.photUtils.Sed
的用法示例。
在下文中一共展示了Sed.resampleSED方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testSedBandpassMatch
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import resampleSED [as 别名]
def testSedBandpassMatch(self):
"""Test errors when bandpass and sed do not completely overlap in wavelength range."""
# Test case where they do match (no error message)
sedwavelen = np.arange(self.wmin, self.wmax+.5, 1)
sedflambda = np.ones(len(sedwavelen))
testsed = Sed(wavelen=sedwavelen, flambda=sedflambda)
print('')
# Test that no warning is made.
with warnings.catch_warnings(record=True) as wa:
w, f = testsed.resampleSED(wavelen_match=self.testbandpass.wavelen,
wavelen=testsed.wavelen, flux=testsed.flambda)
self.assertEqual(len(wa), 0)
np.testing.assert_equal(w, testsed.wavelen)
np.testing.assert_equal(f, testsed.flambda)
# Test that warning is given for non-overlap at either top or bottom end of wavelength range.
sedwavelen = np.arange(self.wmin, self.wmax - 50, 1)
sedflambda = np.ones(len(sedwavelen))
testsed = Sed(wavelen=sedwavelen, flambda=sedflambda)
with warnings.catch_warnings(record=True) as wa:
testsed.resampleSED(wavelen_match=self.testbandpass.wavelen)
self.assertEqual(len(wa), 1)
self.assertIn('non-overlap', str(wa[-1].message))
np.testing.assert_equal(testsed.flambda[-1:], np.NaN)
sedwavelen = np.arange(self.wmin+50, self.wmax, 1)
sedflambda = np.ones(len(sedwavelen))
testsed = Sed(wavelen=sedwavelen, flambda=sedflambda)
with warnings.catch_warnings(record=True) as wa:
testsed.resampleSED(wavelen_match=self.testbandpass.wavelen)
self.assertEqual(len(wa), 1)
self.assertIn('non-overlap', str(wa[-1].message))
np.testing.assert_equal(testsed.flambda[0], np.NaN)
np.testing.assert_equal(testsed.flambda[49], np.NaN)
示例2: magListForSed
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import resampleSED [as 别名]
def magListForSed(self, sedobj, indices=None):
"""
Return a list of magnitudes for a single Sed object.
@param [in] sedobj is an Sed object. Its wavelength grid can be arbitrary. If necessary,
a copy will be created and resampled onto the wavelength grid of the Bandpasses before
magnitudes are calculated. The original Sed will be unchanged.
@param [in] indices is an optional list of indices indicating which bandpasses to actually
calculate magnitudes for. Other magnitudes will be listed as numpy.NaN (i.e. this method will
return as many magnitudes as were loaded with the loadBandpassesFromFiles methods; it will
just return numpy.NaN for magnitudes you did not actually ask for)
@param [out] magList is a list of magnitudes in the bandpasses stored in this BandpassDict
"""
if sedobj.wavelen is not None:
# If the Sed's wavelength grid agrees with self._wavelen_match to one part in
# 10^6, just use the Sed as-is. Otherwise, copy it and resample it onto
# self._wavelen_match
if sedobj._needResample(wavelen_match=self._wavelen_match):
dummySed = Sed(wavelen=sedobj.wavelen, flambda=sedobj.flambda)
dummySed.resampleSED(force=True, wavelen_match=self._bandpassDict.values()[0].wavelen)
else:
dummySed = sedobj
return numpy.array(self._magListForSed(dummySed, indices=indices))
else:
return numpy.array([numpy.NaN]*len(self._bandpassDict))
示例3: calcMagNorm
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import resampleSED [as 别名]
def calcMagNorm(self, objectMags, sedObj, bandpassDict, mag_error = None,
redshift = None, filtRange = None):
"""
This will find the magNorm value that gives the closest match to the magnitudes of the object
using the matched SED. Uses scipy.optimize.leastsq to find the values of fluxNorm that minimizes
the function: ((flux_obs - (fluxNorm*flux_model))/flux_error)**2.
@param [in] objectMags are the magnitude values for the object with extinction matching that of
the SED object. In the normal case using the selectSED routines above it will be dereddened mags.
@param [in] sedObj is an Sed class instance that is set with the wavelength and flux of the
matched SED
@param [in] bandpassDict is a BandpassDict class instance with the Bandpasses set to those
for the magnitudes given for the catalog object
@param [in] mag_error are provided error values for magnitudes in objectMags. If none provided
then this defaults to 1.0. This should be an array of the same length as objectMags.
@param [in] redshift is the redshift of the object if the magnitude is observed
@param [in] filtRange is a selected range of filters specified by their indices in the bandpassList
to match up against. Used when missing data in some magnitude bands.
@param [out] bestMagNorm is the magnitude normalization for the given magnitudes and SED
"""
import scipy.optimize as opt
sedTest = Sed()
sedTest.setSED(sedObj.wavelen, flambda = sedObj.flambda)
if redshift is not None:
sedTest.redshiftSED(redshift)
imSimBand = Bandpass()
imSimBand.imsimBandpass()
zp = -2.5*np.log10(3631) #Note using default AB zeropoint
flux_obs = np.power(10,(objectMags + zp)/(-2.5))
sedTest.resampleSED(wavelen_match=bandpassDict.wavelenMatch)
sedTest.flambdaTofnu()
flux_model = sedTest.manyFluxCalc(bandpassDict.phiArray, bandpassDict.wavelenStep)
if filtRange is not None:
flux_obs = flux_obs[filtRange]
flux_model = flux_model[filtRange]
if mag_error is None:
flux_error = np.ones(len(flux_obs))
else:
flux_error = np.abs(flux_obs*(np.log(10)/(-2.5))*mag_error)
bestFluxNorm = opt.leastsq(lambda x: ((flux_obs - (x*flux_model))/flux_error), 1.0)[0][0]
sedTest.multiplyFluxNorm(bestFluxNorm)
bestMagNorm = sedTest.calcMag(imSimBand)
return bestMagNorm
示例4: fluxListForSed
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import resampleSED [as 别名]
def fluxListForSed(self, sedobj, indices=None):
"""
Return a list of Fluxes for a single Sed object.
@param [in] sedobj is an Sed object. Its wavelength grid can be arbitrary. If necessary,
a copy will be created and resampled onto the wavelength grid of the Bandpasses before
fluxes are calculated. The original Sed will be unchanged.
@param [in] indices is an optional list of indices indicating which bandpasses to actually
calculate fluxes for. Other fluxes will be listed as numpy.NaN (i.e. this method will
return as many fluxes as were loaded with the loadBandpassesFromFiles methods; it will
just return numpy.NaN for fluxes you did not actually ask for)
@param [out] fluxList is a list of fluxes in the bandpasses stored in this BandpassDict
Note on units: Fluxes calculated this way will be the flux density integrated over the
weighted response curve of the bandpass. See equaiton 2.1 of the LSST Science Book
http://www.lsst.org/scientists/scibook
"""
if sedobj.wavelen is not None:
# If the Sed's wavelength grid agrees with self._wavelen_match to one part in
# 10^6, just use the Sed as-is. Otherwise, copy it and resample it onto
# self._wavelen_match
if sedobj._needResample(wavelen_match=self._wavelen_match):
dummySed = Sed(wavelen=sedobj.wavelen, flambda=sedobj.flambda)
dummySed.resampleSED(force=True, wavelen_match=self._bandpassDict.values()[0].wavelen)
else:
dummySed = sedobj
return numpy.array(self._fluxListForSed(dummySed, indices=indices))
else:
return numpy.array([numpy.NaN]*len(self._bandpassDict))
示例5: applyIGM
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import resampleSED [as 别名]
def applyIGM(self, redshift, sedobj):
"""
Apply IGM extinction to already redshifted sed with redshift
between zMin and zMax defined by range of lookup tables
@param [in] redshift is the redshift of the incoming SED object
@param [in] sedobj is the SED object to which IGM extinction will be applied. This object
will be modified as a result of this.
"""
if self.IGMisInitialized == False:
self.initializeIGM()
#First make sure redshift is in range of lookup tables.
if (redshift < self.zMin) or (redshift > self.zMax):
warnings.warn(str("IGM Lookup tables only applicable for " + str(self.zMin) + " < z < " + str(self.zMax) + ". No action taken"))
return
#Now read in closest two lookup tables for given redshift
lowerSed = Sed()
upperSed = Sed()
for lower, upper in zip(self.zRange[:-1], self.zRange[1:]):
if lower <= redshift <= upper:
lowerSed.setSED(self.meanLookups['%.1f' % lower][:,0],
flambda = self.meanLookups['%.1f' % lower][:,1])
upperSed.setSED(self.meanLookups['%.1f' % upper][:,0],
flambda = self.meanLookups['%.1f' % lower][:,1])
break
#Redshift lookup tables to redshift of source, i.e. if source redshift is 1.78 shift lookup
#table for 1.7 and lookup table for 1.8 to up and down to 1.78, respectively
zLowerShift = ((1.0 + redshift)/(1.0 + lower)) - 1.0
zUpperShift = ((1.0 + redshift)/(1.0 + upper)) - 1.0
lowerSed.redshiftSED(zLowerShift)
upperSed.redshiftSED(zUpperShift)
#Resample lower and upper transmission data onto same wavelength grid.
minWavelen = 300. #All lookup tables are usable above 300nm
maxWavelen = np.amin([lowerSed.wavelen[-1], upperSed.wavelen[-1]]) - 0.01
lowerSed.resampleSED(wavelen_min = minWavelen, wavelen_max = maxWavelen, wavelen_step = 0.01)
upperSed.resampleSED(wavelen_match = lowerSed.wavelen)
#Now insert this into a transmission array of 1.0 beyond the limits of current application
#So that we can get an sed back that extends to the longest wavelengths of the incoming sed
finalWavelen = np.arange(300., sedobj.wavelen[-1]+0.01, 0.01)
finalFlambdaExtended = np.ones(len(finalWavelen))
#Weighted Average of Transmission from each lookup table to get final transmission
#table at desired redshift
dzGrid = self.zDelta #Step in redshift between transmission lookup table files
finalSed = Sed()
finalFlambda = (lowerSed.flambda*(1.0 - ((redshift - lower)/dzGrid)) +
upperSed.flambda*(1.0 - ((upper - redshift)/dzGrid)))
finalFlambdaExtended[0:len(finalFlambda)] = finalFlambda
finalSed.setSED(wavelen = finalWavelen, flambda = finalFlambdaExtended)
#Resample incoming sed to new grid so that we don't get warnings from multiplySED
#about matching wavelength grids
sedobj.resampleSED(wavelen_match=finalSed.wavelen)
#Now multiply transmission curve by input SED to get final result and make it the new flambda
#data in the original sed which also is now on a new grid starting at 300 nm
test = sedobj.multiplySED(finalSed)
sedobj.flambda = test.flambda
示例6: get_TotalMags
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import resampleSED [as 别名]
def get_TotalMags(result, bandpasses=('u','g','r','i','z','y')):
datadir = os.environ.get("SIMS_SED_LIBRARY_DIR")
tpath = os.getenv('LSST_THROUGHPUTS_DEFAULT')
bands = {"u":None, "g":None, "r":None, "i":None, "z":None, "y":None}
for k in bands:
bands[k] = Bandpass()
bands[k].readThroughput(os.path.join(tpath, "total_%s.dat"%k))
# Set up phi, the wavelength-normalized system response for each filter,
# for each bandpass for manyMagCalc method.
bplist = []
for f in ['u','g','r','i','z','y']:
bands[f].sbTophi()
bplist.append(bands[f])
ids = result['galid']
diskfile = result['sedFilenameDisk']
bulgefile = result['sedFilenameBulge']
agnfile = result['sedFilenameAgn']
diskmn = result['magNormDisk']
bulgemn = result['magNormBulge']
agnmn = result['magNormAgn']
bulgeAv = result['internalAvBulge']
diskAv = result['internalAvDisk']
redshift = result['redshift']
imsimband = Bandpass()
imsimband.imsimBandpass()
sedDict = {}
retMags = dict([(k, []) for k in bands])
a_int = None
b_int = None
tmpwavelen = None
for id, df, dm, dav, bf, bm, bav, af, am, z in zip(ids, diskfile, diskmn, diskAv,
bulgefile, bulgemn, bulgeAv, agnfile, agnmn, redshift):
tmpflux = None
for comp in ((df, dm, dav, 'galaxySED', False), (bf, bm, bav, 'galaxySED', False), (af, am, None, 'agnSED', True)):
#Zero out the AGN contribution
#for comp in ((df, dm, dav, 'galaxySED', False), (bf, bm, bav, 'galaxySED', False), (af, 99.99, None, 'agnSED', True)):
if not comp[0] == u'None':
if sedDict.has_key(comp[0]):
sed = copy.deepcopy(sedDict[comp[0]])
else:
sed = Sed()
print os.path.join(datadir,comp[3],comp[0])
sed.readSED_flambda(os.path.join(datadir,comp[3],comp[0]))
if comp[4]:
sed.resampleSED(wavelen_match=tmpwavelen)
sedDict[comp[0]] = sed
if a_int is None:
phiarray, dlambda = sed.setupPhiArray(bplist)
a_int, b_int = sed.setupCCMab()
#Careful, this assumes that a disk or bulge sed is read
#before any agn sed
tmpwavelen = sed.wavelen
fNorm = sed.calcFluxNorm(comp[1], imsimband)
sed.multiplyFluxNorm(fNorm)
#I guess this assumes rv=3.1??
if comp[2]:
sed.addCCMDust(a_int, b_int, A_v=comp[2])
wavelenArr=sed.wavelen
if tmpflux is None:
tmpflux = sed.flambda
else:
tmpflux += sed.flambda
newgal = Sed(wavelen=wavelenArr, flambda=tmpflux)
#a_mw, b_mw = sed.setupCCMab()
#sed.addCCMDust(a_mw, b_mw, A_v=mwav)
newgal.redshiftSED(z, dimming=True)
newgal.resampleSED(wavelen_match=bplist[0].wavelen)
newgal.flambdaTofnu()
mags = newgal.manyMagCalc(phiarray, dlambda)
for i,k in enumerate(['u','g','r','i','z','y']):
retMags[k].append(mags[i])
return retMags
示例7: Sed
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import resampleSED [as 别名]
import numpy as np
import lsst.sims.photUtils.Sed as Sed
import os
dataDir = os.getenv('SIMS_SKYBRIGHTNESS_DATA_DIR')
data = np.genfromtxt(os.path.join(dataDir, 'solarSpec/solarSpec.dat'), dtype=zip(['microns','Irr'],[float]*2))
#data['Irr'] = data['Irr']*1 #convert W/m2/micron to erg/s/cm2/nm (HA, it's the same!)
sun = Sed()
sun.setSED(data['microns']*1e3, flambda=data['Irr'])
# Match the wavelenth spacing and range to the ESO spectra
airglowSpec = np.load(os.path.join(dataDir, 'ESO_Spectra/Airglow/airglowSpectra.npz'))
sun.resampleSED(wavelen_match=airglowSpec['wave'])
np.savez(os.path.join(dataDir,'solarSpec/solarSpec.npz'), wave=sun.wavelen, spec=sun.flambda)
示例8: testGalaxyPhotometricUncertainties
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import resampleSED [as 别名]
def testGalaxyPhotometricUncertainties(self):
"""
Test in the case of a catalog of galaxies
"""
lsstDefaults = LSSTdefaults()
phot = PhotometryGalaxies()
galDB = testGalaxyTileDBObj(driver=self.driver, host=self.host, database=self.dbName)
galCat = testGalaxyCatalog(galDB, obs_metadata=self.obs_metadata)
imsimband = Bandpass()
imsimband.imsimBandpass()
ct = 0
for line in galCat.iter_catalog():
bulgeSedName = line[50]
diskSedName = line[51]
agnSedName = line[52]
magNormBulge = line[53]
magNormDisk = line[54]
magNormAgn = line[55]
avBulge = line[56]
avDisk = line[57]
redshift = line[58]
bulgeSed = Sed()
bulgeSed.readSED_flambda(os.path.join(lsst.utils.getPackageDir('sims_sed_library'),
defaultSpecMap[bulgeSedName]))
fNorm=bulgeSed.calcFluxNorm(magNormBulge, imsimband)
bulgeSed.multiplyFluxNorm(fNorm)
diskSed = Sed()
diskSed.readSED_flambda(os.path.join(lsst.utils.getPackageDir('sims_sed_library'),
defaultSpecMap[diskSedName]))
fNorm = diskSed.calcFluxNorm(magNormDisk, imsimband)
diskSed.multiplyFluxNorm(fNorm)
agnSed = Sed()
agnSed.readSED_flambda(os.path.join(lsst.utils.getPackageDir('sims_sed_library'),
defaultSpecMap[agnSedName]))
fNorm = agnSed.calcFluxNorm(magNormAgn, imsimband)
agnSed.multiplyFluxNorm(fNorm)
a_int, b_int = bulgeSed.setupCCMab()
bulgeSed.addCCMDust(a_int, b_int, A_v=avBulge)
a_int, b_int = diskSed.setupCCMab()
diskSed.addCCMDust(a_int, b_int, A_v=avDisk)
bulgeSed.redshiftSED(redshift, dimming=True)
diskSed.redshiftSED(redshift, dimming=True)
agnSed.redshiftSED(redshift, dimming=True)
bulgeSed.resampleSED(wavelen_match=self.totalBandpasses[0].wavelen)
diskSed.resampleSED(wavelen_match=bulgeSed.wavelen)
agnSed.resampleSED(wavelen_match=bulgeSed.wavelen)
numpy.testing.assert_almost_equal(bulgeSed.wavelen, diskSed.wavelen)
numpy.testing.assert_almost_equal(bulgeSed.wavelen, agnSed.wavelen)
fl = bulgeSed.flambda + diskSed.flambda + agnSed.flambda
totalSed = Sed(wavelen=bulgeSed.wavelen, flambda=fl)
sedList = [totalSed, bulgeSed, diskSed, agnSed]
for i, spectrum in enumerate(sedList):
if i==0:
msgroot = 'failed on total'
elif i==1:
msgroot = 'failed on bulge'
elif i==2:
msgroot = 'failed on disk'
elif i==3:
msgroot = 'failed on agn'
for j, b in enumerate(self.bandpasses):
controlSigma = calcMagError_sed(spectrum, self.totalBandpasses[j],
self.skySeds[j],
self.hardwareBandpasses[j],
FWHMeff=lsstDefaults.FWHMeff(b),
photParams=PhotometricParameters())
testSigma = line[26+(i*6)+j]
msg = '%e neq %e; ' % (testSigma, controlSigma) + msgroot
self.assertAlmostEqual(testSigma, controlSigma, 10, msg=msg)
ct += 1
self.assertGreater(ct, 0)
示例9: testFlush
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import resampleSED [as 别名]
def testFlush(self):
"""
Test that the flush method of SedList behaves properly
"""
imsimBand = Bandpass()
imsimBand.imsimBandpass()
nSed = 10
sedNameList_0 = self.getListOfSedNames(nSed)
magNormList_0 = numpy.random.random_sample(nSed)*5.0 + 15.0
internalAvList_0 = numpy.random.random_sample(nSed)*0.3 + 0.1
redshiftList_0 = numpy.random.random_sample(nSed)*5.0
galacticAvList_0 = numpy.random.random_sample(nSed)*0.3 + 0.1
wavelen_match = numpy.arange(300.0, 1500.0, 10.0)
testList = SedList(sedNameList_0, magNormList_0, internalAvList=internalAvList_0, \
redshiftList=redshiftList_0, galacticAvList=galacticAvList_0,
wavelenMatch=wavelen_match)
self.assertEqual(len(testList), nSed)
numpy.testing.assert_array_equal(wavelen_match, testList.wavelenMatch)
for ix in range(len(sedNameList_0)):
self.assertAlmostEqual(internalAvList_0[ix], testList.internalAvList[ix], 10)
self.assertAlmostEqual(galacticAvList_0[ix], testList.galacticAvList[ix], 10)
self.assertAlmostEqual(redshiftList_0[ix], testList.redshiftList[ix], 10)
for ix, (name, norm, iav, gav, zz) in \
enumerate(zip(sedNameList_0, magNormList_0, internalAvList_0, \
galacticAvList_0, redshiftList_0)):
sedControl = Sed()
sedControl.readSED_flambda(os.path.join(self.sedDir, name+'.gz'))
fnorm = sedControl.calcFluxNorm(norm, imsimBand)
sedControl.multiplyFluxNorm(fnorm)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=iav)
sedControl.redshiftSED(zz, dimming=True)
sedControl.resampleSED(wavelen_match=wavelen_match)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=gav)
sedTest = testList[ix]
numpy.testing.assert_array_equal(sedControl.wavelen, sedTest.wavelen)
numpy.testing.assert_array_equal(sedControl.flambda, sedTest.flambda)
numpy.testing.assert_array_equal(sedControl.fnu, sedTest.fnu)
testList.flush()
sedNameList_1 = self.getListOfSedNames(nSed/2)
magNormList_1 = numpy.random.random_sample(nSed/2)*5.0 + 15.0
internalAvList_1 = numpy.random.random_sample(nSed/2)*0.3 + 0.1
redshiftList_1 = numpy.random.random_sample(nSed/2)*5.0
galacticAvList_1 = numpy.random.random_sample(nSed/2)*0.3 + 0.1
testList.loadSedsFromList(sedNameList_1, magNormList_1,
internalAvList=internalAvList_1,
galacticAvList=galacticAvList_1,
redshiftList=redshiftList_1)
self.assertEqual(len(testList), nSed/2)
self.assertEqual(len(testList.redshiftList), nSed/2)
self.assertEqual(len(testList.internalAvList), nSed/2)
self.assertEqual(len(testList.galacticAvList), nSed/2)
numpy.testing.assert_array_equal(wavelen_match, testList.wavelenMatch)
for ix in range(len(sedNameList_1)):
self.assertAlmostEqual(internalAvList_1[ix], testList.internalAvList[ix], 10)
self.assertAlmostEqual(galacticAvList_1[ix], testList.galacticAvList[ix], 10)
self.assertAlmostEqual(redshiftList_1[ix], testList.redshiftList[ix], 10)
for ix, (name, norm, iav, gav, zz) in \
enumerate(zip(sedNameList_1, magNormList_1, internalAvList_1, \
galacticAvList_1, redshiftList_1)):
sedControl = Sed()
sedControl.readSED_flambda(os.path.join(self.sedDir, name+'.gz'))
fnorm = sedControl.calcFluxNorm(norm, imsimBand)
sedControl.multiplyFluxNorm(fnorm)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=iav)
sedControl.redshiftSED(zz, dimming=True)
sedControl.resampleSED(wavelen_match=wavelen_match)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=gav)
sedTest = testList[ix]
numpy.testing.assert_array_equal(sedControl.wavelen, sedTest.wavelen)
numpy.testing.assert_array_equal(sedControl.flambda, sedTest.flambda)
#.........这里部分代码省略.........
示例10: testSetUp
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import resampleSED [as 别名]
#.........这里部分代码省略.........
sedControl.readSED_flambda(os.path.join(self.sedDir, name+'.gz'))
fnorm = sedControl.calcFluxNorm(norm, imsimBand)
sedControl.multiplyFluxNorm(fnorm)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=av)
sedControl.redshiftSED(zz, dimming=False)
numpy.testing.assert_array_equal(sedControl.wavelen, sedTest.wavelen)
numpy.testing.assert_array_equal(sedControl.flambda, sedTest.flambda)
numpy.testing.assert_array_equal(sedControl.fnu, sedTest.fnu)
################ now add galacticAv
sedNameList = self.getListOfSedNames(nSed)
magNormList = numpy.random.random_sample(nSed)*5.0 + 15.0
internalAvList = numpy.random.random_sample(nSed)*0.3 + 0.1
redshiftList = numpy.random.random_sample(nSed)*5.0
galacticAvList = numpy.random.random_sample(nSed)*0.3 + 0.1
testList = SedList(sedNameList, magNormList, internalAvList=internalAvList,
redshiftList=redshiftList, galacticAvList=galacticAvList)
self.assertTrue(testList.wavelenMatch is None)
self.assertTrue(testList.cosmologicalDimming is True)
for avControl, avTest in zip(internalAvList, testList.internalAvList):
self.assertAlmostEqual(avControl, avTest, 10)
for zControl, zTest in zip(redshiftList, testList.redshiftList):
self.assertAlmostEqual(zControl, zTest, 10)
for avControl, avTest in zip(galacticAvList, testList.galacticAvList):
self.assertAlmostEqual(avControl, avTest, 10)
for name, norm, av, zz, gav, sedTest in \
zip(sedNameList, magNormList, internalAvList, \
redshiftList, galacticAvList, testList):
sedControl = Sed()
sedControl.readSED_flambda(os.path.join(self.sedDir, name+'.gz'))
fnorm = sedControl.calcFluxNorm(norm, imsimBand)
sedControl.multiplyFluxNorm(fnorm)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=av)
sedControl.redshiftSED(zz, dimming=True)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=gav)
numpy.testing.assert_array_equal(sedControl.wavelen, sedTest.wavelen)
numpy.testing.assert_array_equal(sedControl.flambda, sedTest.flambda)
numpy.testing.assert_array_equal(sedControl.fnu, sedTest.fnu)
################ now use a wavelen_match
sedNameList = self.getListOfSedNames(nSed)
magNormList = numpy.random.random_sample(nSed)*5.0 + 15.0
internalAvList = numpy.random.random_sample(nSed)*0.3 + 0.1
redshiftList = numpy.random.random_sample(nSed)*5.0
galacticAvList = numpy.random.random_sample(nSed)*0.3 + 0.1
wavelen_match = numpy.arange(300.0, 1500.0, 10.0)
testList = SedList(sedNameList, magNormList, internalAvList=internalAvList,
redshiftList=redshiftList, galacticAvList=galacticAvList,
wavelenMatch=wavelen_match)
self.assertTrue(testList.cosmologicalDimming is True)
for avControl, avTest in zip(internalAvList, testList.internalAvList):
self.assertAlmostEqual(avControl, avTest, 10)
for zControl, zTest in zip(redshiftList, testList.redshiftList):
self.assertAlmostEqual(zControl, zTest, 10)
for avControl, avTest in zip(galacticAvList, testList.galacticAvList):
self.assertAlmostEqual(avControl, avTest, 10)
numpy.testing.assert_array_equal(wavelen_match, testList.wavelenMatch)
for name, norm, av, zz, gav, sedTest in \
zip(sedNameList, magNormList, internalAvList, \
redshiftList, galacticAvList, testList):
sedControl = Sed()
sedControl.readSED_flambda(os.path.join(self.sedDir, name+'.gz'))
fnorm = sedControl.calcFluxNorm(norm, imsimBand)
sedControl.multiplyFluxNorm(fnorm)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=av)
sedControl.redshiftSED(zz, dimming=True)
sedControl.resampleSED(wavelen_match=wavelen_match)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=gav)
numpy.testing.assert_array_equal(sedControl.wavelen, sedTest.wavelen)
numpy.testing.assert_array_equal(sedControl.flambda, sedTest.flambda)
numpy.testing.assert_array_equal(sedControl.fnu, sedTest.fnu)
示例11: testAlternateNormalizingBandpass
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import resampleSED [as 别名]
def testAlternateNormalizingBandpass(self):
"""
A reiteration of testAddingToList, but testing with a non-imsimBandpass
normalizing bandpass
"""
normalizingBand = Bandpass()
normalizingBand.readThroughput(os.path.join(getPackageDir('throughputs'),'baseline','total_r.dat'))
nSed = 10
sedNameList_0 = self.getListOfSedNames(nSed)
magNormList_0 = numpy.random.random_sample(nSed)*5.0 + 15.0
internalAvList_0 = numpy.random.random_sample(nSed)*0.3 + 0.1
redshiftList_0 = numpy.random.random_sample(nSed)*5.0
galacticAvList_0 = numpy.random.random_sample(nSed)*0.3 + 0.1
wavelen_match = numpy.arange(300.0, 1500.0, 10.0)
testList = SedList(sedNameList_0, magNormList_0,
normalizingBandpass=normalizingBand,
internalAvList=internalAvList_0,
redshiftList=redshiftList_0, galacticAvList=galacticAvList_0,
wavelenMatch=wavelen_match)
sedNameList_1 = self.getListOfSedNames(nSed)
magNormList_1 = numpy.random.random_sample(nSed)*5.0 + 15.0
internalAvList_1 = numpy.random.random_sample(nSed)*0.3 + 0.1
redshiftList_1 = numpy.random.random_sample(nSed)*5.0
galacticAvList_1 = numpy.random.random_sample(nSed)*0.3 + 0.1
testList.loadSedsFromList(sedNameList_1, magNormList_1,
internalAvList=internalAvList_1,
galacticAvList=galacticAvList_1,
redshiftList=redshiftList_1)
self.assertEqual(len(testList), 2*nSed)
numpy.testing.assert_array_equal(wavelen_match, testList.wavelenMatch)
for ix in range(len(sedNameList_0)):
self.assertAlmostEqual(internalAvList_0[ix], testList.internalAvList[ix], 10)
self.assertAlmostEqual(galacticAvList_0[ix], testList.galacticAvList[ix], 10)
self.assertAlmostEqual(redshiftList_0[ix], testList.redshiftList[ix], 10)
for ix in range(len(sedNameList_1)):
self.assertAlmostEqual(internalAvList_1[ix], testList.internalAvList[ix+nSed], 10)
self.assertAlmostEqual(galacticAvList_1[ix], testList.galacticAvList[ix+nSed], 10)
self.assertAlmostEqual(redshiftList_1[ix], testList.redshiftList[ix+nSed], 10)
for ix, (name, norm, iav, gav, zz) in \
enumerate(zip(sedNameList_0, magNormList_0, internalAvList_0, \
galacticAvList_0, redshiftList_0)):
sedControl = Sed()
sedControl.readSED_flambda(os.path.join(self.sedDir, name+'.gz'))
fnorm = sedControl.calcFluxNorm(norm, normalizingBand)
sedControl.multiplyFluxNorm(fnorm)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=iav)
sedControl.redshiftSED(zz, dimming=True)
sedControl.resampleSED(wavelen_match=wavelen_match)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=gav)
sedTest = testList[ix]
numpy.testing.assert_array_equal(sedControl.wavelen, sedTest.wavelen)
numpy.testing.assert_array_equal(sedControl.flambda, sedTest.flambda)
numpy.testing.assert_array_equal(sedControl.fnu, sedTest.fnu)
for ix, (name, norm, iav, gav, zz) in \
enumerate(zip(sedNameList_1, magNormList_1, internalAvList_1, \
galacticAvList_1, redshiftList_1)):
sedControl = Sed()
sedControl.readSED_flambda(os.path.join(self.sedDir, name+'.gz'))
fnorm = sedControl.calcFluxNorm(norm, normalizingBand)
sedControl.multiplyFluxNorm(fnorm)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=iav)
sedControl.redshiftSED(zz, dimming=True)
sedControl.resampleSED(wavelen_match=wavelen_match)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=gav)
sedTest = testList[ix+nSed]
numpy.testing.assert_array_equal(sedControl.wavelen, sedTest.wavelen)
numpy.testing.assert_array_equal(sedControl.flambda, sedTest.flambda)
numpy.testing.assert_array_equal(sedControl.fnu, sedTest.fnu)
示例12: testAddingNonesToList
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import resampleSED [as 别名]
def testAddingNonesToList(self):
"""
Test what happens if you add SEDs to an SedList that have None for
one or more of the physical parameters (i.e. galacticAv, internalAv, or redshift)
"""
imsimBand = Bandpass()
imsimBand.imsimBandpass()
nSed = 10
sedNameList_0 = self.getListOfSedNames(nSed)
magNormList_0 = numpy.random.random_sample(nSed)*5.0 + 15.0
internalAvList_0 = numpy.random.random_sample(nSed)*0.3 + 0.1
redshiftList_0 = numpy.random.random_sample(nSed)*5.0
galacticAvList_0 = numpy.random.random_sample(nSed)*0.3 + 0.1
wavelen_match = numpy.arange(300.0, 1500.0, 10.0)
testList = SedList(sedNameList_0, magNormList_0, internalAvList=internalAvList_0, \
redshiftList=redshiftList_0, galacticAvList=galacticAvList_0,
wavelenMatch=wavelen_match)
sedNameList_1 = self.getListOfSedNames(nSed)
magNormList_1 = list(numpy.random.random_sample(nSed)*5.0 + 15.0)
internalAvList_1 = list(numpy.random.random_sample(nSed)*0.3 + 0.1)
redshiftList_1 = list(numpy.random.random_sample(nSed)*5.0)
galacticAvList_1 = list(numpy.random.random_sample(nSed)*0.3 + 0.1)
internalAvList_1[0] = None
redshiftList_1[1] = None
galacticAvList_1[2] = None
internalAvList_1[3] = None
redshiftList_1[3] = None
internalAvList_1[4] = None
galacticAvList_1[4] = None
redshiftList_1[5] = None
galacticAvList_1[5] = None
internalAvList_1[6] = None
redshiftList_1[6] = None
galacticAvList_1[6] = None
testList.loadSedsFromList(sedNameList_1, magNormList_1,
internalAvList=internalAvList_1,
galacticAvList=galacticAvList_1,
redshiftList=redshiftList_1)
self.assertEqual(len(testList), 2*nSed)
numpy.testing.assert_array_equal(wavelen_match, testList.wavelenMatch)
for ix in range(len(sedNameList_0)):
self.assertAlmostEqual(internalAvList_0[ix], testList.internalAvList[ix], 10)
self.assertAlmostEqual(galacticAvList_0[ix], testList.galacticAvList[ix], 10)
self.assertAlmostEqual(redshiftList_0[ix], testList.redshiftList[ix], 10)
for ix in range(len(sedNameList_1)):
self.assertAlmostEqual(internalAvList_1[ix], testList.internalAvList[ix+nSed], 10)
self.assertAlmostEqual(galacticAvList_1[ix], testList.galacticAvList[ix+nSed], 10)
self.assertAlmostEqual(redshiftList_1[ix], testList.redshiftList[ix+nSed], 10)
for ix, (name, norm, iav, gav, zz) in \
enumerate(zip(sedNameList_0, magNormList_0, internalAvList_0, \
galacticAvList_0, redshiftList_0)):
sedControl = Sed()
sedControl.readSED_flambda(os.path.join(self.sedDir, name+'.gz'))
fnorm = sedControl.calcFluxNorm(norm, imsimBand)
sedControl.multiplyFluxNorm(fnorm)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=iav)
sedControl.redshiftSED(zz, dimming=True)
sedControl.resampleSED(wavelen_match=wavelen_match)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=gav)
sedTest = testList[ix]
numpy.testing.assert_array_equal(sedControl.wavelen, sedTest.wavelen)
numpy.testing.assert_array_equal(sedControl.flambda, sedTest.flambda)
numpy.testing.assert_array_equal(sedControl.fnu, sedTest.fnu)
for ix, (name, norm, iav, gav, zz) in \
enumerate(zip(sedNameList_1, magNormList_1, internalAvList_1, \
galacticAvList_1, redshiftList_1)):
sedControl = Sed()
sedControl.readSED_flambda(os.path.join(self.sedDir, name+'.gz'))
fnorm = sedControl.calcFluxNorm(norm, imsimBand)
sedControl.multiplyFluxNorm(fnorm)
if iav is not None:
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=iav)
#.........这里部分代码省略.........
示例13: testAddingToList
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import resampleSED [as 别名]
def testAddingToList(self):
"""
Test that we can add Seds to an already instantiated SedList
"""
imsimBand = Bandpass()
imsimBand.imsimBandpass()
nSed = 10
sedNameList_0 = self.getListOfSedNames(nSed)
magNormList_0 = numpy.random.random_sample(nSed)*5.0 + 15.0
internalAvList_0 = numpy.random.random_sample(nSed)*0.3 + 0.1
redshiftList_0 = numpy.random.random_sample(nSed)*5.0
galacticAvList_0 = numpy.random.random_sample(nSed)*0.3 + 0.1
wavelen_match = numpy.arange(300.0, 1500.0, 10.0)
testList = SedList(sedNameList_0, magNormList_0, internalAvList=internalAvList_0, \
redshiftList=redshiftList_0, galacticAvList=galacticAvList_0,
wavelenMatch=wavelen_match)
# experiment with adding different combinations of physical parameter lists
# as None and not None
for addIav in [True, False]:
for addRedshift in [True, False]:
for addGav in [True, False]:
testList = SedList(sedNameList_0, magNormList_0, internalAvList=internalAvList_0, \
redshiftList=redshiftList_0, galacticAvList=galacticAvList_0,
wavelenMatch=wavelen_match)
sedNameList_1 = self.getListOfSedNames(nSed)
magNormList_1 = numpy.random.random_sample(nSed)*5.0 + 15.0
if addIav:
internalAvList_1 = numpy.random.random_sample(nSed)*0.3 + 0.1
else:
internalAvList_1 = None
if addRedshift:
redshiftList_1 = numpy.random.random_sample(nSed)*5.0
else:
redshiftList_1 = None
if addGav:
galacticAvList_1 = numpy.random.random_sample(nSed)*0.3 + 0.1
else:
galacticAvList_1 = None
testList.loadSedsFromList(sedNameList_1, magNormList_1,
internalAvList=internalAvList_1,
galacticAvList=galacticAvList_1,
redshiftList=redshiftList_1)
self.assertEqual(len(testList), 2*nSed)
numpy.testing.assert_array_equal(wavelen_match, testList.wavelenMatch)
for ix in range(len(sedNameList_0)):
self.assertAlmostEqual(internalAvList_0[ix], testList.internalAvList[ix], 10)
self.assertAlmostEqual(galacticAvList_0[ix], testList.galacticAvList[ix], 10)
self.assertAlmostEqual(redshiftList_0[ix], testList.redshiftList[ix], 10)
for ix in range(len(sedNameList_1)):
if addIav:
self.assertAlmostEqual(internalAvList_1[ix], testList.internalAvList[ix+nSed], 10)
else:
self.assertTrue(testList.internalAvList[ix+nSed] is None)
if addGav:
self.assertAlmostEqual(galacticAvList_1[ix], testList.galacticAvList[ix+nSed], 10)
else:
self.assertTrue(testList.galacticAvList[ix+nSed] is None)
if addRedshift:
self.assertAlmostEqual(redshiftList_1[ix], testList.redshiftList[ix+nSed], 10)
else:
self.assertTrue(testList.redshiftList[ix+nSed] is None)
for ix, (name, norm, iav, gav, zz) in \
enumerate(zip(sedNameList_0, magNormList_0, internalAvList_0, \
galacticAvList_0, redshiftList_0)):
sedControl = Sed()
sedControl.readSED_flambda(os.path.join(self.sedDir, name+'.gz'))
fnorm = sedControl.calcFluxNorm(norm, imsimBand)
sedControl.multiplyFluxNorm(fnorm)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=iav)
sedControl.redshiftSED(zz, dimming=True)
sedControl.resampleSED(wavelen_match=wavelen_match)
a_coeff, b_coeff = sedControl.setupCCMab()
sedControl.addCCMDust(a_coeff, b_coeff, A_v=gav)
sedTest = testList[ix]
numpy.testing.assert_array_equal(sedControl.wavelen, sedTest.wavelen)
numpy.testing.assert_array_equal(sedControl.flambda, sedTest.flambda)
#.........这里部分代码省略.........
示例14: ulysses2SED
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import resampleSED [as 别名]
def ulysses2SED(data=None, workdir='output', wavefile='Ulysses_GaiaBPRP_meanSpecWavelength.txt',
specfile='Ulysses_GaiaBPRP_noiseFreeSpectra.txt',
noiseRoot='Ulysses_GaiaBPRP_noisyPhotSpec', noisy=True,
response=None, wavelen_step=1.0, switch=675.):
"""
Read in some ulysses output and return a single SED object.
"""
if data is None:
data = read_ulysses(workdir=workdir, wavefile=wavefile, specfile=specfile,
noiseRoot=noiseRoot)
if response is None:
response = gaia_response()
if noisy:
datakey = 'noisySpec'
key2 = 'NoisySpec'
red_spec = response.apply(data[datakey][0]['RP'+key2], blue=False)
blue_spec = response.apply(data[datakey][0]['BP'+key2], blue=True)
else:
datakey = 'noiseFreeSpec'
key2 = 'NoiseFreeSpec'
red_spec = response.apply(data[datakey]['RP'+key2], blue=False)
blue_spec = response.apply(data[datakey]['BP'+key2], blue=True)
red_sed = Sed(wavelen=data['RP_wave'], flambda=red_spec) # * 1e3)
blue_sed = Sed(wavelen=data['BP_wave'], flambda=blue_spec) # * 1e3)
wavelen_min = data['BP_wave'].min()
wavelen_max = data['RP_wave'].max()
# Rebin the red and blue to a common wavelength array
red_sed.resampleSED(wavelen_min=wavelen_min, wavelen_max=wavelen_max, wavelen_step=wavelen_step)
blue_sed.resampleSED(wavelen_min=wavelen_min, wavelen_max=wavelen_max, wavelen_step=wavelen_step)
# Clean up nan's from resampling
red_sed.flambda[np.isnan(red_sed.flambda)] = 0.
blue_sed.flambda[np.isnan(blue_sed.flambda)] = 0.
# Assume Poisson stats for the noise.
red_weight = np.ones(red_sed.flambda.size, dtype=float) # 1./red_sed.flambda
blue_weight = np.ones(red_sed.flambda.size, dtype=float) # 1./blue_sed.flambda
red_weight[np.where(red_sed.flambda == 0)] = 0.
blue_weight[np.where(blue_sed.flambda == 0)] = 0.
# red_cutoff = np.min(response.red_wavelen[np.where(response.red_response == 0.)])
# blue_cutoff = np.max(response.blue_wavelen[np.where(response.blue_response == 0.)])
#red_weight[np.where(red_sed.wavelen < red_cutoff+cutoff_pad)] = 0.
#blue_weight[np.where(blue_sed.wavelen > blue_cutoff-cutoff_pad)] = 0.
# Just make a simple switchover wavelength
red_weight[np.where(red_sed.wavelen <= switch)] = 0.
blue_weight[np.where(blue_sed.wavelen > switch)] = 0.
# weight = np.zeros(red_sed.wavelen.size, dtype=float)
# weight[np.where(red_sed.flambda > 0)] += 1
# weight[np.where(blue_sed.flambda > 0)] += 1
flambda = (red_sed.flambda*red_weight + blue_sed.flambda*blue_weight) / (red_weight + blue_weight)
# flambda[np.where(weight == 0.)] = 0.
finalSED = Sed(flambda=flambda, wavelen=red_sed.wavelen)
return finalSED
示例15: galaxy
# 需要导入模块: from lsst.sims.photUtils import Sed [as 别名]
# 或者: from lsst.sims.photUtils.Sed import resampleSED [as 别名]
for f in filterlist:
lsstbp[f].sbTophi()
bplist.append(lsstbp[f])
phiarray, dlambda = tmpgal.setupPhiArray(bplist)
# Set up dictionary + arrays to hold calculated magnitude information.
mags2 = {}
for f in filterlist:
mags2[f] = numpy.zeros(num_gal, dtype='float')
# For each galaxy (in num_gal's), apply internal dust, redshift, resample to 300-1200 nm, apply MW dust on
# shorter (and standardized) wavelength range, fluxnorm, and then calculate mags using manyMagCalc.
for i in range(num_gal):
galname = gallist[gal_name[i]]
tmpgal = Sed(wavelen=gals[galname].wavelen, flambda=gals[galname].flambda)
tmpgal.addCCMDust(a_int, b_int, ebv=ebv_int[i])
tmpgal.redshiftSED(redshifts[i])
tmpgal.resampleSED(wavelen_min=wavelen_min, wavelen_max=wavelen_max, wavelen_step=wavelen_step)
tmpgal.addCCMDust(a_mw, b_mw, ebv=ebv_mw[i])
tmpgal.multiplyFluxNorm(fluxnorm[i])
#tmpgal.flambdaTofnu() #Not needed because multiplyFluxNorm calculates fnu
tmpmags = tmpgal.manyMagCalc(phiarray, dlambda)
j = 0
for f in filterlist:
mags2[f][i] = tmpmags[j]
j = j+1
dt, t = dtime(t)
print "Calculating dust/redshift/dust/fluxnorm/%d magnitudes for %d galaxies optimized way took %f s" \
%(len(filterlist), num_gal, dt)
# Check for differences in magnitudes.
import pylab