当前位置: 首页>>代码示例>>Python>>正文


Python FileIO.iterateLinesFromFile方法代码示例

本文整理汇总了Python中library.file_io.FileIO.iterateLinesFromFile方法的典型用法代码示例。如果您正苦于以下问题:Python FileIO.iterateLinesFromFile方法的具体用法?Python FileIO.iterateLinesFromFile怎么用?Python FileIO.iterateLinesFromFile使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在library.file_io.FileIO的用法示例。


在下文中一共展示了FileIO.iterateLinesFromFile方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_ltuo_hashtag_and_model_rank_accuracy_and_random_rank_accuracy

# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import iterateLinesFromFile [as 别名]
        def get_ltuo_hashtag_and_model_rank_accuracy_and_random_rank_accuracy(file):
            ltuo_hashtag_and_model_rank_accuracy_and_random_rank_accuracy = []
            for data in FileIO.iterateLinesFromFile(file):
#                hashtag, model_rank_accuracy, random_rank_accuracy = data.split(',')[1:3]
                data = data.split(',')[2:5]
                ltuo_hashtag_and_model_rank_accuracy_and_random_rank_accuracy.append([float(i) for i in [data[2], data[0], data[1]]])
            return ltuo_hashtag_and_model_rank_accuracy_and_random_rank_accuracy
开发者ID:kykamath,项目名称:hashtags_and_geo,代码行数:9,代码来源:plots.py

示例2: iterateFrequentLocationsFromFIMahout

# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import iterateLinesFromFile [as 别名]
 def iterateFrequentLocationsFromFIMahout(
     minLocationsTheUserHasCheckedin,
     minUniqueUsersCheckedInTheLocation,
     minCalculatedSupport,
     minLocationsInItemset=0,
     extraMinSupport=minSupport,
     yieldSupport=False,
     lids=False,
 ):
     #        for line in FileIO.iterateLinesFromFile(locationsFIMahoutOutputFile%(minUserLocations, minCalculatedSupport)):
     for line in FileIO.iterateLinesFromFile(
         locationsFIMahoutOutputFile
         % (minLocationsTheUserHasCheckedin, minUniqueUsersCheckedInTheLocation, minCalculatedSupport)
     ):
         if line.startswith("Key:"):
             data = line.split("Value: ")[1][1:-1].split(",")
             if not lids:
                 locationItemset, support = (
                     [getLocationFromLid(i.replace("_", " ")) for i in data[0][1:-1].split()],
                     int(data[1]),
                 )
             else:
                 locationItemset, support = [i.replace("_", " ") for i in data[0][1:-1].split()], int(data[1])
             if support >= extraMinSupport and len(locationItemset) >= minLocationsInItemset:
                 if not yieldSupport:
                     yield [location for location in locationItemset if isWithinBoundingBox(location, us_boundary)]
                 else:
                     yield [
                         location
                         for location in locationItemset
                         if isWithinBoundingBox(getLocationFromLid(location), us_boundary)
                     ], support
开发者ID:kykamath,项目名称:users_and_geo,代码行数:34,代码来源:spots_by_locations_fi.py

示例3: streamingLSHClusteringDemo

# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import iterateLinesFromFile [as 别名]
def streamingLSHClusteringDemo():
    clustering_settings = {'dimensions': 53,
                            'signature_length': 13,
                            'number_of_permutations': 5,
                            'threshold_for_document_to_be_in_cluster': 0.2}
    clustering=StreamingLSHClustering(**clustering_settings)
    docId = 0
    docsToOriginalClusterMap = {}
    for line in FileIO.iterateLinesFromFile('../data/streaming.dat'):
        document = createDocumentFromLine(docId, line)
        docsToOriginalClusterMap[docId] = document.clusterId
        docId+=1
        clustering.getClusterAndUpdateExistingClusters(document)
    clusterLabels = []
    for k, cluster in clustering.clusters.iteritems(): clusterLabels.append([docsToOriginalClusterMap[doc.docId] for doc in cluster.iterateDocumentsInCluster()])
    return EvaluationMetrics.getValueForClusters(clusterLabels, EvaluationMetrics.purity)
开发者ID:greeness,项目名称:streaming_lsh,代码行数:18,代码来源:StreamingLSHClusteringDemo.py

示例4: createDocumentFromLine

# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import iterateLinesFromFile [as 别名]
nns_settings = {'dimensions': 53,
                'signature_length': 13,
                'number_of_permutations': 5,
                'signature_type': 'signature_type_lists',
                'nearest_neighbor_threshold': 0.2}

def createDocumentFromLine(docId, line):
    vector, words = Vector(), line.split()
    for word in words[1:]:
        if word not in vector: vector[word]=1
        else: vector[word]+=1
    return Document(words[0], vector)
i = 0
documents = []
for line in FileIO.iterateLinesFromFile('../data/streaming.dat'):
    documents.append(createDocumentFromLine(None, line)); i+=1
    if i==10: break

class NearestNeighborUsingLSHTests(unittest.TestCase):
    def setUp(self):
        self.nnsLSH = NearestNeighborUsingLSH(**nns_settings)
#    def test_nns(self):
#        for d in documents: 
#            self.nnsLSH.update(d)
#            self.assertEqual(d.docId, self.nnsLSH.getNearestDocument(d))
    def test_getNearestDocumentWithReplacement(self):
        for d in documents: self.nnsLSH.update(d)
        for d in documents: print d.docId, self.nnsLSH.getNearestDocumentWithReplacement(d)
        
    
开发者ID:greeness,项目名称:streaming_lsh,代码行数:30,代码来源:nearest_neighbor_lsh_tests.py


注:本文中的library.file_io.FileIO.iterateLinesFromFile方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。