本文整理汇总了Python中library.file_io.FileIO.createDirectoryForFile方法的典型用法代码示例。如果您正苦于以下问题:Python FileIO.createDirectoryForFile方法的具体用法?Python FileIO.createDirectoryForFile怎么用?Python FileIO.createDirectoryForFile使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类library.file_io.FileIO
的用法示例。
在下文中一共展示了FileIO.createDirectoryForFile方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: getLocationDistributionPlots
# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import createDirectoryForFile [as 别名]
def getLocationDistributionPlots(place):
for clustering in iteraterUserClusterings(place):
for location in locationToUserMapIterator(place):
print clustering[0], location['location']
fileName=placesImagesFolder%place['name']+str(clustering[0])+'/'+ location['location'].replace(' ', '_').replace('.', '+')+'.png'
FileIO.createDirectoryForFile(fileName)
getPerLocationDistributionPlots(clustering, location, fileName)
示例2: drawAllCheckinPlotsByVisitingClassesUsingDemography
# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import createDirectoryForFile [as 别名]
def drawAllCheckinPlotsByVisitingClassesUsingDemography(model, **conf):
plotsFolder = conf['plotsFolder']+'byVisitingClassesUsingDemography/'
for locationId, location in model.locationsCheckinsMap.iteritems():
if location['checkins']:
locationObject = Location.getObjectFromDict(location['object'])
plotsFile = '%s%s/%s'%(plotsFolder, Location.getLocationClassBasedOnVisitingProbability(locationObject),locationId+'.png')
FileIO.createDirectoryForFile(plotsFile)
checkinsByBinsAndDemographies = defaultdict(dict)
demographColorMap = {}
for day, binData in location['checkins'].iteritems():
for bin, checkins in binData.iteritems():
bin=int(bin)
for user in checkins:
demographyId = model.userMap[user]['object']['demography_id']
demographColorMap[demographyId] = model.userMap[user]['object']['demography_color']
if bin not in checkinsByBinsAndDemographies[demographyId]: checkinsByBinsAndDemographies[demographyId][bin]=0
checkinsByBinsAndDemographies[demographyId][bin]+=1
# for bin in checkinsByBinsAndDemographies:
# for demographyId in demographColorMap:
# plt.scatter([bin], [checkinsByBinsAndDemographies[bin][demographyId]], color=demographColorMap[demographyId])
for demographyId, data in checkinsByBinsAndDemographies.iteritems():
# print smooth([data[k] for k in sorted(data)], 4)
plt.fill_between(sorted(data.keys()), smooth([data[k] for k in sorted(data)], 10)[:len(data)], color=demographColorMap[demographyId], alpha=0.65)
# plt.hist([k for k, v in checkinsByBins.iteritems() for i in range(v)], conf['noOfBinsPerDay'], normed=True)
plt.title(str(locationObject.visitingProbability))
plt.savefig(plotsFile)
plt.clf()
示例3: writeClusterKML
# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import createDirectoryForFile [as 别名]
def writeClusterKML():
kml = SpotsKML()
outputKMLFile='%s/clusters.kml'%placesAnalysisFolder%place['name']
for data in FileIO.iterateJsonFromFile(placesUserClusterFeaturesFile%place['name']):
clusterId, color, features = data
kml.addLocationPointsWithTitles([(getLocationFromLid(f[0].replace('_', ' ')), f[2]) for f in features[:noOfFeatures]], color=color)
FileIO.createDirectoryForFile(outputKMLFile)
kml.write(outputKMLFile)
示例4: writeUserClusterKMLs
# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import createDirectoryForFile [as 别名]
def writeUserClusterKMLs(place):
clustering = getUserClustering(place, place.get('k'))
colorMap = clustering[3]
for clusterId, details in sorted(getUserClusteringDetails(place, clustering).iteritems(), key=lambda k: int(k[0])):
kml = SpotsKML()
kml.addLocationPointsWithTitles([(getLocationFromLid(lid), unicode(name).encode('utf-8')) for lid, name, _ in details['locations'][:5]], color=colorMap[clusterId])
outputKMLFile=placesKMLsFolder%place['name']+'locations/userClusters/%s/%s.kml'%(str(clustering[0]), str(clusterId))
FileIO.createDirectoryForFile(outputKMLFile)
kml.write(outputKMLFile)
示例5: getLocationsCheckinDistribution
# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import createDirectoryForFile [as 别名]
def getLocationsCheckinDistribution(place):
checkinDistribution = {}
for location in locationToUserMapIterator(place):
checkinDistribution[location['location']]=sum([len(epochs) for user, userVector in location['users'].iteritems() for day, dayVector in userVector.iteritems() for db, epochs in dayVector.iteritems()])
dataX, dataY = getDataDistribution(checkinDistribution.values())
plt.loglog(dataX,dataY)
outputFile = placesAnalysisFolder%place['name']+'locationsCheckinDistribution.png'
FileIO.createDirectoryForFile(outputFile)
plt.savefig(outputFile)
示例6: writeARFFFile
# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import createDirectoryForFile [as 别名]
def writeARFFFile(place):
userVectors = defaultdict(dict)
locationToUserMap = dict((l['location'], l) for l in locationToUserMapIterator(place, minCheckins=50))
for lid in locationToUserMap:
for user in locationToUserMap[lid]['users']:
userVectors[user][lid.replace(' ', '_')]=sum(len(locationToUserMap[lid]['users'][user][d][db]) for d in locationToUserMap[lid]['users'][user] for db in locationToUserMap[lid]['users'][user][d])
for user in userVectors.keys()[:]:
if sum(userVectors[user].itervalues())<place['minUserCheckins']: del userVectors[user]
arffFile=ARFF.writeARFFForClustering(userVectors, place['name'])
outputFileName = getARFFFileName(place)
FileIO.createDirectoryForFile(outputFileName)
GeneralMethods.runCommand('mv %s %s'%(arffFile, outputFileName))
示例7: plotGaussianGraphsForClusters
# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import createDirectoryForFile [as 别名]
def plotGaussianGraphsForClusters(place):
for location in Analysis.iterateLocationsWithClusterDetails(place):
total = location['total']
clustersInfo = location['clustersInfo']
for clusterId, data in clustersInfo.iteritems():
mean, std, clusterSum, color = data['mean'], data['std'], data['clusterSum'], data['color']
if std!=0: plotNorm(clusterSum/total, mean, std, color=color, label=str(clusterId))
else: plotNorm(clusterSum/total, mean, random.uniform(0.1, 0.5), color=color, label=str(clusterId))
plt.xlim(xmin=0, xmax=23); plt.legend()
plt.title(location['name'])
fileName = '/'.join([placesGaussianImagesFolder%place['name'], getLocationType(location), location['location'].replace(' ', '_').replace('.', '+')+'.png'])
print fileName
FileIO.createDirectoryForFile(fileName)
plt.savefig(fileName), plt.clf()
示例8: hashtag_groups_dot_files
# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import createDirectoryForFile [as 别名]
def hashtag_groups_dot_files(association_measure_file=f_fisher_exact_association_measure):
output_file_format = fld_google_drive_data_analysis%GeneralMethods.get_method_id()+\
'/'+association_measure_file.split('/')[-1]+'/%s.dot'
for line_no, data in\
enumerate(FileIO.iterateJsonFromFile(association_measure_file, remove_params_dict=True)):
_, _, edges = data
graph = nx.Graph()
for edge in edges:
u,v,attr_dict = edge
u = unicode(u).encode('utf-8')
v = unicode(v).encode('utf-8')
graph.add_edge(u,v, attr_dict)
output_file = output_file_format%line_no
print 'Writing file: ', output_file
FileIO.createDirectoryForFile(output_file)
nx.write_dot(graph, output_file)
示例9: drawAllCheckinPlotsByVisitingClasses
# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import createDirectoryForFile [as 别名]
def drawAllCheckinPlotsByVisitingClasses(model, **conf):
plotsFolder = conf['plotsFolder']+'byVisitingClasses/'
for locationId, location in model.locationsCheckinsMap.iteritems():
if location['checkins']:
locationObject = Location.getObjectFromDict(location['object'])
plotsFile = '%s%s/%s'%(plotsFolder, Location.getLocationClassBasedOnVisitingProbability(locationObject),locationId+'.png')
FileIO.createDirectoryForFile(plotsFile)
checkinsByBins = defaultdict(int)
for day, binData in location['checkins'].iteritems():
for bin, checkins in binData.iteritems():
checkinsByBins[int(bin)]+=len(checkins)
# print len(checkinsByBins.keys()), len(smooth(checkinsByBins.values(), 1)[:48])
plt.plot(checkinsByBins.keys(), smooth(checkinsByBins.values(), 1))
# plt.hist([k for k, v in checkinsByBins.iteritems() for i in range(v)], conf['noOfBinsPerDay'], normed=True)
plt.title(str(locationObject.visitingProbability))
plt.savefig(plotsFile)
plt.clf()
示例10: plot_locations_influence_on_world_map
# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import createDirectoryForFile [as 别名]
def plot_locations_influence_on_world_map(ltuo_model_id_and_hashtag_tag, noOfInfluencers=10, percentage_of_locations=0.15):
input_locations = [
('40.6000_-73.9500', 'new_york'),
('33.3500_-118.1750', 'los_angeles'),
('29.7250_-97.1500', 'austin'),
('30.4500_-95.7000', 'college_station'),
('-22.4750_-42.7750', 'rio'),
('51.4750_0.0000', 'london'),
('-23.2000_-46.4000', 'sao_paulo')
]
for model_id, hashtag_tag in ltuo_model_id_and_hashtag_tag:
tuo_location_and_tuo_neighbor_location_and_locations_influence_score = \
Experiments.load_tuo_location_and_tuo_neighbor_location_and_locations_influence_score(model_id, hashtag_tag, noOfInfluencers=None, influence_type=InfluenceMeasuringModels.TYPE_INCOMING_INFLUENCE)
for input_location, label in input_locations:
for location, tuo_neighbor_location_and_locations_influence_score in \
tuo_location_and_tuo_neighbor_location_and_locations_influence_score:
if input_location==location:
input_location = getLocationFromLid(input_location.replace('_', ' '))
output_file = fld_results%GeneralMethods.get_method_id() + '/%s_%s/%s.png'%(model_id, hashtag_tag, label)
number_of_outgoing_influences = int(len(tuo_neighbor_location_and_locations_influence_score)*percentage_of_locations)
if number_of_outgoing_influences==0: number_of_outgoing_influences=len(tuo_neighbor_location_and_locations_influence_score)
locations = zip(*tuo_neighbor_location_and_locations_influence_score)[0][:number_of_outgoing_influences]
locations = [getLocationFromLid(location.replace('_', ' ')) for location in locations]
# locations = filter(lambda location: isWithinBoundingBox(location, PARTIAL_WORLD_BOUNDARY), locations)
if locations:
_, m = plotPointsOnWorldMap(locations, resolution='c', blueMarble=False, bkcolor='#000000', c='#FF00FF', returnBaseMapObject=True, lw = 0)
# _, m = plotPointsOnWorldMap(locations, resolution='c', blueMarble=False, bkcolor='#CFCFCF', c='#FF00FF', returnBaseMapObject=True, lw = 0)
for location in locations:
# if isWithinBoundingBox(location, PARTIAL_WORLD_BOUNDARY):
m.drawgreatcircle(location[1], location[0], input_location[1], input_location[0], color='#FAA31B', lw=1., alpha=0.5)
# plotPointsOnWorldMap([input_location], blueMarble=False, bkcolor='#CFCFCF', c='#003CFF', s=40, lw = 0)
plotPointsOnWorldMap([input_location], resolution='c', blueMarble=False, bkcolor='#000000', c='#003CFF', s=40, lw = 0)
# plotPointsOnWorldMap([input_location], resolution='c', blueMarble=False, bkcolor='#CFCFCF', c='#003CFF', s=40, lw = 0)
FileIO.createDirectoryForFile(output_file)
print output_file
savefig(output_file)
plt.clf()
else:
GeneralMethods.runCommand('rm -rf %s'%output_file)
break
示例11: getLocationPlots
# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import createDirectoryForFile [as 别名]
def getLocationPlots(place, clusterOVLType, type='scatter'):
clustering = getUserClustering(place, place.get('k'))
validClusters = getUserClusteringDetails(place, clustering).keys()
def scatterPlot(clustering, location, fileName):
userClusterMap = {}
for clusterId, users in clustering[2]['clusters'].iteritems():
for user in users:
if user in location['users']: userClusterMap[user]=clusterId
scatterData = defaultdict(dict)
clusterMap = clustering[3]
for user, userVector in location['users'].iteritems():
if user in userClusterMap:
for d in userVector:
for db in userVector[d]:
for h in [(datetime.datetime.fromtimestamp(ep).hour-6)%24 for ep in userVector[d][db]]:
if h not in scatterData[userClusterMap[user]]: scatterData[userClusterMap[user]][h]=0
scatterData[userClusterMap[user]][h]+=1
# total = float(sum([k for cluster, clusterInfo in scatterData.iteritems() for k, v in clusterInfo.iteritems() for i in range(v)]))
for cluster, clusterInfo in scatterData.iteritems():
if cluster in validClusters:
if type=='normal':
data = [k for k, v in clusterInfo.iteritems() for i in range(v)]
mean, std = np.mean(data), np.std(data)
if std!=0: plotNorm(sum(data), mean, std, color=clusterMap[cluster])
else: plotNorm(sum(data), mean, random.uniform(0.1, 0.5), color=clusterMap[cluster])
elif type=='scatter': plt.scatter(clusterInfo.keys(), clusterInfo.values(), color=clusterMap[cluster], label=cluster)
plt.title('%s (%s)'%(location['name'],location['location'])),plt.legend()
# plt.show()
plt.xlim(xmin=0,xmax=24)
plt.savefig(fileName), plt.clf()
# for clustering in iteraterUserClusterings(place):
for location in locationToUserMapIterator(place, minCheckins=place['minLocationCheckinsForPlots']):
# for location in iterateLocationsByOVLAndClustersType(place, clusterOVLType):
# location = location['details']
print clustering[0], location['location']
fileName=placesImagesFolder%place['name']+'%s/'%type+str(clustering[0])+'/'+ location['location'].replace(' ', '_').replace('.', '+')+'.png'
FileIO.createDirectoryForFile(fileName)
scatterPlot(clustering, location, fileName)
示例12: plot_maps_for_every_hour
# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import createDirectoryForFile [as 别名]
def plot_maps_for_every_hour():
MINUTES = 15
hashtags = ['ripstevejobs', 'cnbcdebate']
map_from_hashtag_to_subplot = dict([('ripstevejobs', 211), ('cnbcdebate', 212)])
map_from_epoch_lag_to_map_from_hashtag_to_tuples_of_location_and_epoch_lag = defaultdict(dict)
for hashtag in hashtags:
for hashtag_object in FileIO.iterateJsonFromFile('./data/%s.json'%hashtag):
map_from_epoch_time_unit_to_tuples_of_location_and_epoch_occurrence_time = getOccurranceDistributionInEpochs(getOccuranesInHighestActiveRegion(hashtag_object), timeUnit=MINUTES*60, fillInGaps=True, occurancesCount=False)
tuples_of_epoch_time_unit_and_tuples_of_location_and_epoch_occurrence_time = sorted(map_from_epoch_time_unit_to_tuples_of_location_and_epoch_occurrence_time.iteritems(), key=itemgetter(0))
epoch_starting_time_unit = tuples_of_epoch_time_unit_and_tuples_of_location_and_epoch_occurrence_time[0][0]
epoch_ending_time_unit = epoch_starting_time_unit+24*60*60
for epoch_time_unit, tuples_of_location_and_epoch_occurrence_time in tuples_of_epoch_time_unit_and_tuples_of_location_and_epoch_occurrence_time:
if epoch_time_unit<=epoch_ending_time_unit:
if tuples_of_location_and_epoch_occurrence_time:
epoch_lag = epoch_time_unit - epoch_starting_time_unit
tuples_of_location_and_epoch_occurrence_time = sorted(tuples_of_location_and_epoch_occurrence_time, key=itemgetter(1))
map_from_epoch_lag_to_map_from_hashtag_to_tuples_of_location_and_epoch_lag[epoch_lag][hashtag] = [(getLatticeLid(location, 0.145), epoch_occurrence_time-epoch_starting_time_unit)for location, epoch_occurrence_time in tuples_of_location_and_epoch_occurrence_time]
map_from_hashtag_to_accumulated_tuples_of_location_and_epoch_lag = defaultdict(list)
GeneralMethods.runCommand('rm -rf ./images/plot_maps_for_every_hour/')
for epoch_lag in sorted(map_from_epoch_lag_to_map_from_hashtag_to_tuples_of_location_and_epoch_lag):
file_world_map_plot = './images/plot_maps_for_every_hour/%s.png'%(epoch_lag)
print file_world_map_plot
map_from_hashtag_to_tuples_of_location_and_epoch_lag = map_from_epoch_lag_to_map_from_hashtag_to_tuples_of_location_and_epoch_lag[epoch_lag]
for hashtag, tuples_of_location_and_epoch_lag in map_from_hashtag_to_tuples_of_location_and_epoch_lag.iteritems():
map_from_hashtag_to_accumulated_tuples_of_location_and_epoch_lag[hashtag]+=tuples_of_location_and_epoch_lag
for hashtag, accumulated_tuples_of_location_and_epoch_lag in map_from_hashtag_to_accumulated_tuples_of_location_and_epoch_lag.iteritems():
plt.subplot(map_from_hashtag_to_subplot[hashtag])
tuples_of_location_and_epoch_max_lag= [(location, max(zip(*iterator_of_tuples_of_location_and_epoch_lag)[1]))
for location, iterator_of_tuples_of_location_and_epoch_lag in
groupby(sorted(accumulated_tuples_of_location_and_epoch_lag, key=itemgetter(0)), key=itemgetter(0))
]
locations, colors = zip(*[(getLocationFromLid(location.replace('_', ' ')), (epoch_lag+MINUTES*60)-epoch_max_lag) for location, epoch_max_lag in sorted(tuples_of_location_and_epoch_max_lag, key=itemgetter(1), reverse=True)])
plotPointsOnWorldMap(locations, blueMarble=False, bkcolor='#CFCFCF', c=colors, cmap=matplotlib.cm.cool, lw = 0, vmax=epoch_lag+MINUTES*60)
plt.title('%s (%s hours)'%(hashtag, (epoch_lag+MINUTES*60)/(60.*60)))
# plt.show()
FileIO.createDirectoryForFile(file_world_map_plot)
plt.savefig(file_world_map_plot)
plt.clf()
示例13: utm_object_analysis
# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import createDirectoryForFile [as 别名]
def utm_object_analysis():
ltuo_utm_id_and_num_of_neighbors_and_mean_common_h_count = []
output_file = fld_google_drive_data_analysis%GeneralMethods.get_method_id()+'.df'
so_valid_utm_ids = set()
for utm_object in FileIO.iterateJsonFromFile(f_hashtags_by_utm_id, True):
so_valid_utm_ids.add(utm_object['utm_id'])
for utm_object in FileIO.iterateJsonFromFile(f_hashtags_by_utm_id, True):
so_valid_nei_utm_ids = set(utm_object['mf_nei_utm_id_to_common_h_count']).intersection(so_valid_utm_ids)
mean_num_of_common_h_count = np.mean([utm_object['mf_nei_utm_id_to_common_h_count'][nei_utm_id]
for nei_utm_id in so_valid_nei_utm_ids])
ltuo_utm_id_and_num_of_neighbors_and_mean_common_h_count.append([utm_object['utm_id'],
len(so_valid_nei_utm_ids),
mean_num_of_common_h_count])
utm_ids, num_of_neighbors, mean_common_h_count = zip(*ltuo_utm_id_and_num_of_neighbors_and_mean_common_h_count)
od = rlc.OrdDict([
('utm_ids', robjects.StrVector(utm_ids)),
('num_of_neighbors', robjects.FloatVector(num_of_neighbors)),
('mean_common_h_count', robjects.FloatVector(mean_common_h_count))
])
df = robjects.DataFrame(od)
FileIO.createDirectoryForFile(output_file)
print 'Saving df to: ', output_file
df.to_csvfile(output_file)
示例14: locations_at_top_and_bottom
# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import createDirectoryForFile [as 别名]
def locations_at_top_and_bottom(model_ids, no_of_locations=5):
for model_id in model_ids:
output_file_format = analysis_folder+'%s/'%(GeneralMethods.get_method_id())+'%s/%s.json'
input_locations = [
# ('40.6000_-73.9500', 'new_york'),
('30.4500_-95.7000', 'college_station'),
]
tuo_location_and_tuo_neighbor_location_and_influence_score = \
Experiments.load_tuo_location_and_tuo_neighbor_location_and_pure_influence_score(model_id)
for input_location, label in input_locations:
for location, tuo_neighbor_location_and_influence_score in \
tuo_location_and_tuo_neighbor_location_and_influence_score:
if input_location==location:
output_file = output_file_format%(input_location, model_id)
GeneralMethods.runCommand('rm -rf %s'%output_file)
FileIO.createDirectoryForFile(output_file)
FileIO.writeToFileAsJson("Bottom:", output_file)
for neighbor_location_and_influence_score in tuo_neighbor_location_and_influence_score[:no_of_locations]:
FileIO.writeToFileAsJson(neighbor_location_and_influence_score+[''], output_file)
FileIO.writeToFileAsJson("Top:", output_file)
for neighbor_location_and_influence_score in \
reversed(tuo_neighbor_location_and_influence_score[-no_of_locations:]):
FileIO.writeToFileAsJson(neighbor_location_and_influence_score+[''], output_file)
示例15: plotHastagClasses
# 需要导入模块: from library.file_io import FileIO [as 别名]
# 或者: from library.file_io.FileIO import createDirectoryForFile [as 别名]
def plotHastagClasses(timeRange, folderType):
def getFileName():
for i in combinations('abcedfghijklmnopqrstuvwxyz',2): yield ''.join(i)+'.png'
count=1
# for hashtagObject in FileIO.iterateJsonFromFile(hashtagsWithoutEndingWindowFile%(folderType,'%s_%s'%timeRange)):
for hashtagObject in FileIO.iterateJsonFromFile(hashtagsFile%('testing_world','%s_%s'%(2,11))):
# HashtagsClassifier.classify(hashtagObject)
print count; count+=1
# if hashtagObject['h']=='ripamy':
classId = HashtagsClassifier.classify(hashtagObject)
if classId!=None:
classId = 1
outputFile = hashtagsImagesHashtagsClassFolder%folderType+'%s/%s.png'%(classId, hashtagObject['h']); FileIO.createDirectoryForFile(outputFile)
fileNameIterator = getFileName()
timeUnits, timeSeries = getTimeUnitsAndTimeSeries(hashtagObject['oc'], timeUnit=HashtagsClassifier.CLASSIFIER_TIME_UNIT_IN_SECONDS)
occurancesInActivityRegions = [[getOccuranesInHighestActiveRegion(hashtagObject), 'm']]
# for hashtagPropagatingRegion in HashtagsClassifier._getActivityRegionsWithActivityAboveThreshold(hashtagObject):
# validTimeUnits = [timeUnits[i] for i in range(hashtagPropagatingRegion[0], hashtagPropagatingRegion[1]+1)]
# occurancesInActiveRegion = [(p,t) for p,t in hashtagObject['oc'] if GeneralMethods.approximateEpoch(t, TIME_UNIT_IN_SECONDS) in validTimeUnits]
# occurancesInActivityRegions.append([occurancesInActiveRegion, GeneralMethods.getRandomColor()])
currentMainRangeId = 0
for occurances1, color1 in occurancesInActivityRegions:
# outputFile=outputFolder+fileNameIterator.next();FileIO.createDirectoryForFile(outputFile)
print outputFile
ax = plt.subplot(312)
subRangeId = 0
for occurances, color in occurancesInActivityRegions:
if subRangeId==currentMainRangeId: color='m'
timeUnits, timeSeries = getTimeUnitsAndTimeSeries(occurances, timeUnit=HashtagsClassifier.CLASSIFIER_TIME_UNIT_IN_SECONDS)
# if len(timeUnits)<24:
# difference = 24-len(timeUnits)
# timeUnits=list(timeUnits)+[timeUnits[-1]+(i+1)*HashtagsClassifier.CLASSIFIER_TIME_UNIT_IN_SECONDS for i in range(difference)]
# timeSeries=list(timeSeries)+[0 for i in range(difference)]
# print len(timeUnits[:24]), len(timeSeries[:24])
plt.plot_date([datetime.datetime.fromtimestamp(t) for t in timeUnits], timeSeries, '-o', c=color)
subRangeId+=1
# plt.ylim(ymax=1)
plt.setp(ax.get_xticklabels(), rotation=10, fontsize=7)
ax=plt.subplot(313)
subRangeId = 0
timeUnits, timeSeries = getTimeUnitsAndTimeSeries(hashtagObject['oc'], timeUnit=HashtagsClassifier.CLASSIFIER_TIME_UNIT_IN_SECONDS)
plt.plot_date([datetime.datetime.fromtimestamp(t) for t in timeUnits], timeSeries, '-')
for occurances, color in occurancesInActivityRegions:
if subRangeId==currentMainRangeId: color='m'
timeUnits, timeSeries = getTimeUnitsAndTimeSeries(occurances, timeUnit=HashtagsClassifier.CLASSIFIER_TIME_UNIT_IN_SECONDS)
plt.plot_date([datetime.datetime.fromtimestamp(t) for t in timeUnits], timeSeries, '-o', c=color)
subRangeId+=1
plt.setp(ax.get_xticklabels(), rotation=10, fontsize=7)
plt.subplot(311)
occurancesGroupedByLattice = sorted(
[(getLocationFromLid(lid.replace('_', ' ')), len(list(occs))) for lid, occs in groupby(sorted([(getLatticeLid(l, LATTICE_ACCURACY), t) for l, t in occurances1], key=itemgetter(0)), key=itemgetter(0))],
key=itemgetter(1)
)
points, colors = zip(*occurancesGroupedByLattice)
cm = matplotlib.cm.get_cmap('cool')
if len(points)>1:
sc = plotPointsOnWorldMap(points, c=colors, cmap=cm, lw=0, alpha=1.0)
plt.colorbar(sc)
else: sc = plotPointsOnWorldMap(points, c='m', lw=0)
plt.title(hashtagObject['h']+ '(%d)'%len(occurancesGroupedByLattice))
# plt.show()
try:
plt.savefig(outputFile); plt.clf()
except: pass
currentMainRangeId+=1