本文整理汇总了Python中library.file_io.FileIO类的典型用法代码示例。如果您正苦于以下问题:Python FileIO类的具体用法?Python FileIO怎么用?Python FileIO使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了FileIO类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plotQualityWithKMeansAndSSA
def plotQualityWithKMeansAndSSA():
del plotSettings["ssa_mr"]
speedStats = dict([(k, {"f1": [], "nmi": [], "purity": []}) for k in plotSettings])
for data in FileIO.iterateJsonFromFile(TweetsFile.stats_file):
for k in speedStats:
for metric in speedStats["ssa"]:
speedStats[k][metric].append(data[k][metric])
for k in speedStats:
del speedStats[k]["f1"]
speedStats.update(dict([(k, {"f1": [], "nmi": [], "purity": []}) for k in kMeansPlotSettings]))
k = "k_means"
for data in FileIO.iterateJsonFromFile(TweetsFile.combined_stats_file):
for metric in speedStats["k_means"]:
speedStats[k][metric].append(data[k][metric])
for k in speedStats:
if "f1" in speedStats[k]:
del speedStats[k]["f1"]
dataForPlot = dict([(k, []) for k in speedStats])
for k in speedStats:
for k1 in speedStats[k]:
dataForPlot[k] += [np.mean(speedStats[k][k1])]
# del dataForPlot['k_means']
print dataForPlot
ind, width = np.arange(2), 0.1
rects, i = [], 1
plotSettings.update(kMeansPlotSettings)
for k in dataForPlot:
rects.append(plt.bar(ind + i * width, dataForPlot[k], width, color=plotSettings[k]["color"]))
i += 1
plt.ylabel(getLatexForString("Score"))
plt.title(getLatexForString("Clustering quality comparison for Streaming LSH with SSA"))
plt.xticks(ind + 2 * width, ("$Purity$", "$NMI$"))
plt.legend([r[0] for r in rects], [plotSettings[k]["label"] for k in plotSettings], loc=4)
# plt.show()
plt.savefig("qualityComparisonAll.pdf")
示例2: generate_hashtag_specific_location_and_pure_influence_scores
def generate_hashtag_specific_location_and_pure_influence_scores(test_models_ids):
for test_model_id in test_models_ids:
output_file = f_ltuo_hashtag_and_ltuo_location_and_pure_influence_score%(test_model_id)
GeneralMethods.runCommand('rm -rf %s'%output_file)
ltuo_hashtag_and_ltuo_location_and_occurrence_time = Experiments.load_ltuo_hashtag_and_ltuo_location_and_occurrence_time()
for hashtag_count, (hashtag, ltuo_location_and_occurrence_time) in\
enumerate(ltuo_hashtag_and_ltuo_location_and_occurrence_time):
ltuo_location_and_occurrence_times = [(location, sorted(zip(*ito_location_and_occurrence_time)[1]))
for location, ito_location_and_occurrence_time in
groupby(
sorted(ltuo_location_and_occurrence_time, key=itemgetter(0)),
key=itemgetter(0)
)
]
print hashtag_count, test_model_id
ltuo_location_and_pure_influence_score = []
for location, location_occurrence_times in ltuo_location_and_occurrence_times:
pure_influence_scores = []
for neighbor_location, neighbor_location_occurrence_times in ltuo_location_and_occurrence_times:
if location!=neighbor_location:
pure_influence_score = MF_INFLUENCE_MEASURING_MODELS_TO_MODEL_ID[test_model_id](neighbor_location_occurrence_times, location_occurrence_times)
pure_influence_scores.append(pure_influence_score)
ltuo_location_and_pure_influence_score.append([location, np.mean(pure_influence_scores)])
ltuo_location_and_pure_influence_score = sorted(ltuo_location_and_pure_influence_score, key=itemgetter(1))
FileIO.writeToFileAsJson([hashtag, ltuo_location_and_pure_influence_score], output_file)
示例3: dimensionsUpdateFrequencyEstimation
def dimensionsUpdateFrequencyEstimation(estimationObject, currentMessageTime):
'''
Observe the new dimensions that get added to current dimension if the dimensions
are being updated at regular intervals.
For example, number of dimensions being added after 10m, 20m,... 5 horus.
As time increases the number of 'decayed' dimensions increase. The current dimensions
has a lot of unwanted decayed dimensions. Using this information identify the time
interval that is best suited to refresh dimensions.
Tentative: We decide to pick the time interval at which the rate of decay is maximum.
'''
def updatePhraseScore(phraseObject):
phraseObject.updateScore(currentMessageTime, 0, **estimationObject.stream_settings)
return phraseObject
dimensions = estimationObject.stream_settings['dimensions']
newList = [p.text for p in Phrase.sort((updatePhraseScore(p) for p in estimationObject.phraseTextToPhraseObjectMap.itervalues()), reverse=True)][:dimensions]
print currentMessageTime, len(newList)
if len(newList) >= dimensions:
idsOfDimensionsListToCompare = [(i, GeneralMethods.approximateToNearest5Minutes(currentMessageTime - i)) for i in estimationObject.dimensionUpdateTimeDeltas if GeneralMethods.approximateToNearest5Minutes(currentMessageTime - i) in estimationObject.dimensionListsMap]
dimensionsUpdateFrequency = {}
for td, id in idsOfDimensionsListToCompare:
oldList = estimationObject.dimensionListsMap[id]
dimensionsUpdateFrequency[str(td.seconds)] = len(set(newList).difference(oldList))
print len(estimationObject.dimensionListsMap), currentMessageTime, len(newList), [(k, dimensionsUpdateFrequency[k]) for k in sorted(dimensionsUpdateFrequency)]
iterationData = {
'time_stamp': getStringRepresentationForTweetTimestamp(currentMessageTime),
'total_number_of_phrases': len(estimationObject.phraseTextToPhraseObjectMap),
'settings': pprint.pformat(estimationObject.stream_settings),
ParameterEstimation.dimensionsUpdateFrequencyId:dimensionsUpdateFrequency
}
FileIO.writeToFileAsJson(iterationData, estimationObject.dimensionsUpdateFrequencyFile)
estimationObject.dimensionListsMap[GeneralMethods.approximateToNearest5Minutes(currentMessageTime)] = newList[:]
for key in estimationObject.dimensionListsMap.keys()[:]:
if currentMessageTime - key > estimationObject.dimensionUpdateTimeDeltas[-1]: del estimationObject.dimensionListsMap[key]
示例4: generate
def generate(self):
i=0
for tweet in TwitterIterators.iterateTweetsFromExperts():
FileIO.writeToFileAsJson(tweet, self.fileName)
i+=1
if i==self.length: break;
os.system('gzip %s'%self.fileName)
示例5: generate_data_for_significant_nei_utm_ids
def generate_data_for_significant_nei_utm_ids():
output_file = GeneralMethods.get_method_id()+'.json'
so_hashtags, mf_utm_id_to_valid_nei_utm_ids = set(), {}
for utm_object in \
FileIO.iterateJsonFromFile(f_hashtags_by_utm_id, True):
for hashtag, count in utm_object['mf_hashtag_to_count'].iteritems():
if hashtag!='total_num_of_occurrences': so_hashtags.add(hashtag)
mf_utm_id_to_valid_nei_utm_ids[utm_object['utm_id']] =\
utm_object['mf_nei_utm_id_to_common_h_count'].keys()
hashtags = sorted(list(so_hashtags))
mf_utm_id_to_vector = {}
for utm_object in FileIO.iterateJsonFromFile(f_hashtags_by_utm_id, True):
# print i, utm_object['utm_id']
utm_id_vector = map(lambda hashtag: utm_object['mf_hashtag_to_count'].get(hashtag, 0.0),
hashtags)
mf_utm_id_to_vector[utm_object['utm_id']] = robjects.FloatVector(utm_id_vector)
for i, (utm_id, vector) in enumerate(mf_utm_id_to_vector.iteritems()):
print '%s of %s'%(i+1, len(mf_utm_id_to_vector))
ltuo_utm_id_and_vector = [(utm_id, vector)]
for valid_nei_utm_id in mf_utm_id_to_valid_nei_utm_ids[utm_id]:
if valid_nei_utm_id in mf_utm_id_to_vector and valid_nei_utm_id!=utm_id:
ltuo_utm_id_and_vector.append((valid_nei_utm_id, mf_utm_id_to_vector[valid_nei_utm_id]))
od = rlc.OrdDict(sorted(ltuo_utm_id_and_vector, key=itemgetter(0)))
df_utm_vectors = robjects.DataFrame(od)
df_utm_vectors_json = R_Helper.get_json_for_data_frame(df_utm_vectors)
dfm_dict = cjson.decode(df_utm_vectors_json)
mf_utm_ids_to_utm_colnames = dict(zip(zip(*ltuo_utm_id_and_vector)[0], df_utm_vectors.colnames))
utm_id_colname = mf_utm_ids_to_utm_colnames[utm_id]
dfm_dict['prediction_variable'] = utm_id_colname
dfm_dict['predictor_variables'] = filter(lambda colname: colname!=utm_id_colname,
df_utm_vectors.colnames)
dfm_dict['mf_utm_colnames_to_utm_ids'] = dict(zip(df_utm_vectors.colnames, zip(*ltuo_utm_id_and_vector)[0]))
FileIO.writeToFileAsJson(dfm_dict, output_file)
示例6: generateStatsForMRKMeansClusteringQuality
def generateStatsForMRKMeansClusteringQuality():
for i in [90000, 100000, 200000, 300000, 400000, 500000]:
print 'Generating stats for: ',i
tf = TweetsFile(i, **experts_twitter_stream_settings)
FileIO.writeToFileAsJson({'mr_k_means': tf.generateStatsForKMeansMRClustering(),
'settings': Settings.getSerialzedObject(tf.stream_settings)},
TweetsFile.mr_stats_file)
示例7: drawAllCheckinPlotsByVisitingClassesUsingDemography
def drawAllCheckinPlotsByVisitingClassesUsingDemography(model, **conf):
plotsFolder = conf['plotsFolder']+'byVisitingClassesUsingDemography/'
for locationId, location in model.locationsCheckinsMap.iteritems():
if location['checkins']:
locationObject = Location.getObjectFromDict(location['object'])
plotsFile = '%s%s/%s'%(plotsFolder, Location.getLocationClassBasedOnVisitingProbability(locationObject),locationId+'.png')
FileIO.createDirectoryForFile(plotsFile)
checkinsByBinsAndDemographies = defaultdict(dict)
demographColorMap = {}
for day, binData in location['checkins'].iteritems():
for bin, checkins in binData.iteritems():
bin=int(bin)
for user in checkins:
demographyId = model.userMap[user]['object']['demography_id']
demographColorMap[demographyId] = model.userMap[user]['object']['demography_color']
if bin not in checkinsByBinsAndDemographies[demographyId]: checkinsByBinsAndDemographies[demographyId][bin]=0
checkinsByBinsAndDemographies[demographyId][bin]+=1
# for bin in checkinsByBinsAndDemographies:
# for demographyId in demographColorMap:
# plt.scatter([bin], [checkinsByBinsAndDemographies[bin][demographyId]], color=demographColorMap[demographyId])
for demographyId, data in checkinsByBinsAndDemographies.iteritems():
# print smooth([data[k] for k in sorted(data)], 4)
plt.fill_between(sorted(data.keys()), smooth([data[k] for k in sorted(data)], 10)[:len(data)], color=demographColorMap[demographyId], alpha=0.65)
# plt.hist([k for k, v in checkinsByBins.iteritems() for i in range(v)], conf['noOfBinsPerDay'], normed=True)
plt.title(str(locationObject.visitingProbability))
plt.savefig(plotsFile)
plt.clf()
示例8: generate_tuo_location_and_tuo_neighbor_location_and_pure_influence_score
def generate_tuo_location_and_tuo_neighbor_location_and_pure_influence_score(models_ids, startTime, endTime, outputFolder, hashtag_tag):
for model_id in models_ids:
# if w_extra_hashtags: output_file = tuo_location_and_tuo_neighbor_location_and_pure_influence_score_file%(model_id, hashtag_tag)
# else: output_file = tuo_location_and_tuo_neighbor_location_and_pure_influence_score_file%(model_id, wout_extra_hashtags_tag)
output_file = tuo_location_and_tuo_neighbor_location_and_pure_influence_score_file%(model_id, hashtag_tag)
GeneralMethods.runCommand('rm -rf %s'%output_file)
for line_count, location_object in enumerate(iterateJsonFromFile(
location_objects_file%(outputFolder, startTime.strftime('%Y-%m-%d'), endTime.strftime('%Y-%m-%d'))
)):
print line_count, model_id
tuo_neighbor_location_and_pure_influence_score = []
location_hashtag_set = set(location_object['hashtags'])
for neighbor_location, mf_hashtag_to_tuo_occurrences_and_time_range in location_object['links'].iteritems():
pure_influence_scores = []
for hashtag, (neighbor_location_occurrences, time_range) in mf_hashtag_to_tuo_occurrences_and_time_range.iteritems():
if hashtag in location_object['hashtags']:
location_occurrences = location_object['hashtags'][hashtag][0]
pure_influence_scores.append(MF_INFLUENCE_MEASURING_MODELS_TO_MODEL_ID[model_id](location_occurrences, neighbor_location_occurrences))
neighbor_location_hashtag_set = set(mf_hashtag_to_tuo_occurrences_and_time_range.keys())
if hashtag_tag==w_extra_hashtags_tag:
for hashtag in location_hashtag_set.difference(neighbor_location_hashtag_set): pure_influence_scores.append(1.0)
for hashtag in neighbor_location_hashtag_set.difference(location_hashtag_set): pure_influence_scores.append(-1.0)
mean_pure_influence_score = np.mean(pure_influence_scores)
tuo_neighbor_location_and_pure_influence_score.append([neighbor_location, mean_pure_influence_score])
tuo_neighbor_location_and_pure_influence_score = sorted(tuo_neighbor_location_and_pure_influence_score, key=itemgetter(1))
FileIO.writeToFileAsJson([location_object['id'], tuo_neighbor_location_and_pure_influence_score], output_file)
示例9: mr_data_analysis
def mr_data_analysis(input_files_start_time, input_files_end_time, min_hashtag_occurrences):
# output_file = f_tuo_normalized_occurrence_count_and_distribution_value%(input_files_start_time.strftime('%Y-%m-%d'), input_files_end_time.strftime('%Y-%m-%d'), min_hashtag_occurrences)
# output_file = f_tweet_count_stats%(input_files_start_time.strftime('%Y-%m-%d'), input_files_end_time.strftime('%Y-%m-%d'), min_hashtag_occurrences)
# output_file = f_tuo_lid_and_distribution_value%(input_files_start_time.strftime('%Y-%m-%d'), input_files_end_time.strftime('%Y-%m-%d'), min_hashtag_occurrences)
output_file = f_tuo_hashtag_and_occurrence_count_and_entropy_and_focus_and_coverage_and_peak%(input_files_start_time.strftime('%Y-%m-%d'), input_files_end_time.strftime('%Y-%m-%d'), min_hashtag_occurrences)
# output_file = f_tuo_rank_and_average_percentage_of_occurrences%(input_files_start_time.strftime('%Y-%m-%d'), input_files_end_time.strftime('%Y-%m-%d'), min_hashtag_occurrences)
# output_file = f_tuo_iid_and_interval_stats%(input_files_start_time.strftime('%Y-%m-%d'), input_files_end_time.strftime('%Y-%m-%d'), min_hashtag_occurrences)
# output_file = f_tuo_iid_and_perct_change_of_occurrences%(input_files_start_time.strftime('%Y-%m-%d'), input_files_end_time.strftime('%Y-%m-%d'), min_hashtag_occurrences)
# output_file = f_tuo_normalized_iid_and_tuo_prct_of_occurrences_and_entropy_and_focus_and_coverage%(input_files_start_time.strftime('%Y-%m-%d'), input_files_end_time.strftime('%Y-%m-%d'), min_hashtag_occurrences)
# output_file = f_hashtag_objects%(input_files_start_time.strftime('%Y-%m-%d'), input_files_end_time.strftime('%Y-%m-%d'), min_hashtag_occurrences)
# output_file = f_tuo_lid_and_ltuo_other_lid_and_temporal_distance%(input_files_start_time.strftime('%Y-%m-%d'), input_files_end_time.strftime('%Y-%m-%d'), min_hashtag_occurrences)
# output_file = f_tuo_lid_and_ltuo_other_lid_and_no_of_co_occurrences%(input_files_start_time.strftime('%Y-%m-%d'), input_files_end_time.strftime('%Y-%m-%d'), min_hashtag_occurrences)
# output_file = f_tuo_high_accuracy_lid_and_distribution%(input_files_start_time.strftime('%Y-%m-%d'), input_files_end_time.strftime('%Y-%m-%d'), min_hashtag_occurrences)
# output_file = f_tuo_no_of_hashtags_and_count%(input_files_start_time.strftime('%Y-%m-%d'), input_files_end_time.strftime('%Y-%m-%d'), min_hashtag_occurrences)
# output_file = f_tuo_no_of_locations_and_count%(input_files_start_time.strftime('%Y-%m-%d'), input_files_end_time.strftime('%Y-%m-%d'), min_hashtag_occurrences)
# output_file = f_tuo_no_of_peak_lids_and_count%(input_files_start_time.strftime('%Y-%m-%d'), input_files_end_time.strftime('%Y-%m-%d'), min_hashtag_occurrences)
print PARAMS_DICT
# runMRJob(MRAnalysis, output_file, getInputFiles(input_files_start_time, input_files_end_time), jobconf={'mapred.reduce.tasks':300})
runMRJob(MRAnalysis, output_file, getPreprocessedHashtagsFile(), jobconf={'mapred.reduce.tasks':300})
FileIO.writeToFileAsJson(PARAMS_DICT, output_file)
示例10: modifiedClusterAnalysisMethod
def modifiedClusterAnalysisMethod(hdStreamClusteringObject, currentMessageTime):
global evaluation, previousTime
currentTime = time.time()
documentClusters = [
cluster.documentsInCluster.keys()
for k, cluster in hdStreamClusteringObject.clusters.iteritems()
if len(cluster.documentsInCluster.keys()) >= experts_twitter_stream_settings["cluster_filter_threshold"]
]
iteration_data = evaluation.getEvaluationMetrics(
documentClusters,
currentTime - previousTime,
{
"type": experts_twitter_stream_settings["dimensions_performance_type"],
"dimensions": experts_twitter_stream_settings["dimensions"],
},
)
iteration_data["no_of_observed_dimensions"] = len(hdStreamClusteringObject.phraseTextToPhraseObjectMap)
previousTime = time.time()
FileIO.writeToFileAsJson(iteration_data, JustifyDimensionsEstimation.stats_file)
del iteration_data["clusters"]
print currentMessageTime, iteration_data
if experts_twitter_stream_settings["dimensions"] != 76819 and 2 * experts_twitter_stream_settings[
"dimensions"
] <= len(hdStreamClusteringObject.phraseTextToPhraseObjectMap):
raise Exception
示例11: analyzeQuality
def analyzeQuality(graphs, graphType):
def getQualityScore(graphMap, edgesToKeep, timeDifference):
dataToReturn = []
for j, intervalInSeconds in enumerate([1]):
intervalInSeconds*=timeDifference
linearGraph = LocationGraphs.combineLocationGraphs(graphMap, startingGraphId, datetime.datetime.fromtimestamp(endingGraphId+1), intervalInSeconds, linear=True, edgesToKeep=edgesToKeep)
logGraph = LocationGraphs.combineLocationGraphs(graphMap, startingGraphId, datetime.datetime.fromtimestamp(endingGraphId+1), intervalInSeconds, linear=False, edgesToKeep=edgesToKeep)
linearClusters = [[str(c), [l[0]for l in lst]] for c, lst in groupby(sorted(clusterUsingAffinityPropagation(linearGraph)[1], key=itemgetter(1)), key=itemgetter(1))]
logarithmicClusters = [[str(c), [l[0]for l in lst]] for c, lst in groupby(sorted(clusterUsingAffinityPropagation(logGraph)[1], key=itemgetter(1)), key=itemgetter(1))]
score = LocationGraphs.getClusterQualityScore(linearClusters, logarithmicClusters)
print intervalInSeconds, edgesToKeep, score
dataToReturn.append(score)
return dataToReturn
graphFile = qualityMetricsFolder%graphType
print graphFile
GeneralMethods.runCommand('rm -rf %s'%graphFile)
for edgesToKeep in range(1,11):
# for edgesToKeep in [1,10]:
edgesToKeep*=0.1
graphMap = dict(graphs[:])
startingGraphId, endingGraphId = min(graphMap.keys()), max(graphMap.keys())
timeDifference = endingGraphId-startingGraphId
LocationGraphs.updateLogarithmicGraphs(graphMap, edgesToKeep=edgesToKeep)
# print {'edgesToKeep': edgesToKeep, 'score': np.mean(getQualityScore(graphMap, edgesToKeep, timeDifference))}
FileIO.writeToFileAsJson({'edgesToKeep': edgesToKeep, 'score': np.mean(getQualityScore(graphMap, edgesToKeep, timeDifference))}, graphFile)
示例12: measureRankingQuality
def measureRankingQuality(iterationData=None, experimentFileName=None):
# def getTopTopics(model, noOfTopics):
# topics = set()
# topTopics = model.topTopics[:]
# while True:
# topicIndex = GeneralMethods.weightedChoice([i[1] for i in topTopics])
# topic = topTopics[topicIndex][0].id
# del topTopics[topicIndex]
# if topic not in topics: topics.add(topic)
# if len(topics)==noOfTopics or len(topics)==len(model.topTopics): break
# return [(t, 0) for t in topics]
if iterationData:
currentTimeStep, model, _, _, finalCall, conf = iterationData
if not finalCall:
rankingMethods = conf["rankingMethods"]
experimentFileName = conf["experimentFileName"]
topTopics = sorted(model.topicsDistributionInTheTimeSet.iteritems(), key=itemgetter(1), reverse=True)[
:10
]
# topTopics = getTopTopics(model, 10)
# topTopics = random.sample(sorted(model.topicsDistributionInTheTimeSet.iteritems(), key=itemgetter(1), reverse=True)[:10], min(len(model.topicsDistributionInTheTimeSet),5))
# topTopics = random.sample(model.topicsDistributionInTheTimeSet.items(), min(len(model.topicsDistributionInTheTimeSet),5))
iterationData = {"currentTimeStep": currentTimeStep, "spammmess": defaultdict(list)}
for rankingMethod in rankingMethods:
for queryTopic, _ in topTopics:
ranking_id, messages = rankingMethod(queryTopic, model.topicToMessagesMap, **conf)
# if spammness(messages, norm_k)==0:
# print 'c'
# print rankingMethod, spammness(messages, norm_k)
iterationData["spammmess"][ranking_id].append(spammness(messages, norm_k))
# print ranking_id, spammness(messages, norm_k)
FileIO.writeToFileAsJson(iterationData, experimentFileName)
model.topicsDistributionInTheTimeSet = defaultdict(int)
示例13: getLocationDistributionPlots
def getLocationDistributionPlots(place):
for clustering in iteraterUserClusterings(place):
for location in locationToUserMapIterator(place):
print clustering[0], location['location']
fileName=placesImagesFolder%place['name']+str(clustering[0])+'/'+ location['location'].replace(' ', '_').replace('.', '+')+'.png'
FileIO.createDirectoryForFile(fileName)
getPerLocationDistributionPlots(clustering, location, fileName)
示例14: trendCurves
def trendCurves(iterationData=None, experimentFileName=None):
if iterationData:
currentTimeStep, _, currentTopics, _, finalCall, conf = iterationData
experimentFileName = conf['experimentFileName']
if not finalCall:
topicDistribution = dict((str(topic.id), {'total': topic.totalCount, 'timeStep': topic.countDistribution[currentTimeStep]}) for topic in currentTopics)
# print currentTimeStep
FileIO.writeToFileAsJson({'t':currentTimeStep, 'topics':topicDistribution}, experimentFileName)
else:
iterationInfo = {'trending_topics': [topic.id for topic in currentTopics if topic.stickiness>=stickinessLowerThreshold],
'topic_colors': dict((str(topic.id), topic.color) for topic in currentTopics),
'conf': conf}
del iterationInfo['conf']['spamDectectionMethod']
FileIO.writeToFileAsJson(iterationInfo, experimentFileName)
else:
topicsDataX = defaultdict(list)
topicsDataY = defaultdict(list)
for data in FileIO.iterateJsonFromFile(experimentFileName):
if 'conf' not in data:
for topic in data['topics']: topicsDataX[topic].append(data['t']), topicsDataY[topic].append(data['topics'][topic]['timeStep'])
else: topicColorMap=data['topic_colors']; trendingTopics=data['trending_topics']
for topic in topicsDataX: plt.fill_between(topicsDataX[topic], topicsDataY[topic], color=topicColorMap[str(topic)], alpha=1.0)
plt.figure()
for topic in trendingTopics: plt.fill_between(topicsDataX[str(topic)], topicsDataY[str(topic)], color=topicColorMap[str(topic)], alpha=1.0)
plt.ylabel('Number of Contents', fontsize=16, fontweight='bold')
plt.show()
示例15: generateRadiusSpots
def generateRadiusSpots(radiusInMiles):
graph = nx.Graph()
spotsFile = radiusSpotsFolder+'%s'%(radiusInMiles)
print 'Creating:', spotsFile
for lid in locationIterator():
for location in nearbyLocations(lid, radiusInMiles): graph.add_edge(location['_id'], lid)
for locations in nx.connected_components(graph): FileIO.writeToFileAsJson({'venues': locations}, spotsFile)