本文整理汇总了Python中jcvi.formats.base.DictFile.values方法的典型用法代码示例。如果您正苦于以下问题:Python DictFile.values方法的具体用法?Python DictFile.values怎么用?Python DictFile.values使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类jcvi.formats.base.DictFile
的用法示例。
在下文中一共展示了DictFile.values方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: htg
# 需要导入模块: from jcvi.formats.base import DictFile [as 别名]
# 或者: from jcvi.formats.base.DictFile import values [as 别名]
def htg(args):
"""
%prog htg fastafile template.sbt
Prepare sqnfiles for Genbank HTG submission to update existing records.
`fastafile` contains the records to update, multiple records are allowed
(with each one generating separate sqn file in the sqn/ folder). The record
defline has the accession ID. For example,
>AC148290.3
Internally, this generates two additional files (phasefile and namesfile)
and download records from Genbank. Below is implementation details:
`phasefile` contains, for each accession, phase information. For example:
AC148290.3 3 HTG 2 mth2-45h12
which means this is a Phase-3 BAC. Record with only a single contig will be
labeled as Phase-3 regardless of the info in the `phasefile`. Template file
is the Genbank sbt template. See jcvi.formats.sbt for generation of such
files.
Another problem is that Genbank requires the name of the sequence to stay
the same when updating and will kick back with a table of name conflicts.
For example:
We are unable to process the updates for these entries
for the following reason:
Seqname has changed
Accession Old seq_name New seq_name
--------- ------------ ------------
AC239792 mtg2_29457 AC239792.1
To prepare a submission, this script downloads genbank and asn.1 format,
and generate the phase file and the names file (use formats.agp.phase() and
apps.gbsubmit.asn(), respectively). These get automatically run.
However, use --phases if the genbank files contain outdated information.
For example, the clone name changes or phase upgrades. In this case, run
formats.agp.phase() manually, modify the phasefile and use --phases to override.
"""
from jcvi.formats.fasta import sequin, ids
from jcvi.formats.agp import phase
from jcvi.apps.fetch import entrez
p = OptionParser(htg.__doc__)
p.add_option("--phases", default=None,
help="Use another phasefile to override [default: %default]")
p.add_option("--comment", default="",
help="Comments for this update [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
fastafile, sbtfile = args
pf = fastafile.rsplit(".", 1)[0]
idsfile = pf + ".ids"
phasefile = pf + ".phases"
namesfile = pf + ".names"
ids([fastafile, "--outfile={0}".format(idsfile)])
asndir = "asn.1"
mkdir(asndir)
entrez([idsfile, "--format=asn.1", "--outdir={0}".format(asndir)])
asn(glob("{0}/*".format(asndir)) + \
["--outfile={0}".format(namesfile)])
if opts.phases is None:
gbdir = "gb"
mkdir(gbdir)
entrez([idsfile, "--format=gb", "--outdir={0}".format(gbdir)])
phase(glob("{0}/*".format(gbdir)) + \
["--outfile={0}".format(phasefile)])
else:
phasefile = opts.phases
assert op.exists(namesfile) and op.exists(phasefile)
newphasefile = phasefile + ".new"
newphasefw = open(newphasefile, "w")
comment = opts.comment
fastadir = "fasta"
sqndir = "sqn"
mkdir(fastadir)
mkdir(sqndir)
from jcvi.graphics.histogram import stem_leaf_plot
names = DictFile(namesfile)
assert len(set(names.keys())) == len(set(names.values()))
phases = DictFile(phasefile)
ph = [int(x) for x in phases.values()]
# vmin 1, vmax 4, bins 3
#.........这里部分代码省略.........
示例2: genestats
# 需要导入模块: from jcvi.formats.base import DictFile [as 别名]
# 或者: from jcvi.formats.base.DictFile import values [as 别名]
def genestats(args):
"""
%prog genestats gffile
Print summary stats, including:
- Number of genes
- Number of single-exon genes
- Number of multi-exon genes
- Number of distinct exons
- Number of genes with alternative transcript variants
- Number of predicted transcripts
- Mean number of distinct exons per gene
- Mean number of transcripts per gene
- Mean gene locus size (first to last exon)
- Mean transcript size (UTR, CDS)
- Mean exon size
Stats modeled after barley genome paper Table 1.
A physical, genetic and functional sequence assembly of the barley genome
"""
p = OptionParser(genestats.__doc__)
p.add_option("--groupby", default="conf_class",
help="Print separate stats groupby")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
gff_file, = args
gb = opts.groupby
g = make_index(gff_file)
tf = "transcript.sizes"
if need_update(gff_file, tf):
fw = open(tf, "w")
for feat in g.features_of_type("mRNA"):
fid = feat.id
conf_class = feat.attributes.get(gb, "all")
tsize = sum((c.stop - c.start + 1) for c in g.children(fid, 1) \
if c.featuretype == "exon")
print >> fw, "\t".join((fid, str(tsize), conf_class))
fw.close()
tsizes = DictFile(tf, cast=int)
conf_classes = DictFile(tf, valuepos=2)
logging.debug("A total of {0} transcripts populated.".format(len(tsizes)))
genes = []
for feat in g.features_of_type("gene"):
fid = feat.id
transcripts = [c.id for c in g.children(fid, 1) \
if c.featuretype == "mRNA"]
transcript_sizes = [tsizes[x] for x in transcripts]
exons = set((c.chrom, c.start, c.stop) for c in g.children(fid, 2) \
if c.featuretype == "exon")
conf_class = conf_classes[transcripts[0]]
gs = GeneStats(feat, conf_class, transcript_sizes, exons)
genes.append(gs)
r = {} # Report
distinct_groups = set(conf_classes.values())
for g in distinct_groups:
num_genes = num_single_exon_genes = num_multi_exon_genes = 0
num_genes_with_alts = num_transcripts = num_exons = 0
cum_locus_size = cum_transcript_size = cum_exon_size = 0
for gs in genes:
if gs.conf_class != g:
continue
num_genes += 1
if gs.num_exons == 1:
num_single_exon_genes += 1
else:
num_multi_exon_genes += 1
num_exons += gs.num_exons
if gs.num_transcripts > 1:
num_genes_with_alts += 1
num_transcripts += gs.num_transcripts
cum_locus_size += gs.locus_size
cum_transcript_size += gs.cum_transcript_size
cum_exon_size += gs.cum_exon_size
mean_num_exons = num_exons * 1. / num_genes
mean_num_transcripts = num_transcripts * 1. / num_genes
mean_locus_size = cum_locus_size * 1. / num_genes
mean_transcript_size = cum_transcript_size * 1. / num_transcripts
mean_exon_size = cum_exon_size * 1. / num_exons
r[("Number of genes", g)] = num_genes
r[("Number of single-exon genes", g)] = \
percentage(num_single_exon_genes, num_genes, mode=1)
r[("Number of multi-exon genes", g)] = \
percentage(num_multi_exon_genes, num_genes, mode=1)
r[("Number of distinct exons", g)] = num_exons
r[("Number of genes with alternative transcript variants", g)] = \
percentage(num_genes_with_alts, num_genes, mode=1)
r[("Number of predicted transcripts", g)] = num_transcripts
r[("Mean number of distinct exons per gene", g)] = mean_num_exons
r[("Mean number of transcripts per gene", g)] = mean_num_transcripts
r[("Mean gene locus size (first to last exon)", g)] = mean_locus_size
r[("Mean transcript size (UTR, CDS)", g)] = mean_transcript_size
#.........这里部分代码省略.........
示例3: main
# 需要导入模块: from jcvi.formats.base import DictFile [as 别名]
# 或者: from jcvi.formats.base.DictFile import values [as 别名]
def main():
"""
%prog bedfile id_mappings
Takes a bedfile that contains the coordinates of features to plot on the
chromosomes, and `id_mappings` file that map the ids to certain class. Each
class will get assigned a unique color. `id_mappings` file is optional (if
omitted, will not paint the chromosome features, except the centromere).
"""
p = OptionParser(main.__doc__)
p.add_option("--title", default="Medicago truncatula v3.5",
help="title of the image [default: `%default`]")
p.add_option("--gauge", default=False, action="store_true",
help="draw a gauge with size label [default: %default]")
p.add_option("--imagemap", default=False, action="store_true",
help="generate an HTML image map associated with the image [default: %default]")
p.add_option("--winsize", default=50000, type="int",
help="if drawing an imagemap, specify the window size (bases) of each map element "
"[default: %default bp]")
p.add_option("--empty", help="Write legend for unpainted region")
opts, args, iopts = p.set_image_options(figsize="6x6", dpi=300)
if len(args) not in (1, 2):
sys.exit(p.print_help())
bedfile = args[0]
mappingfile = None
if len(args) == 2:
mappingfile = args[1]
winsize = opts.winsize
imagemap = opts.imagemap
w, h = iopts.w, iopts.h
dpi = iopts.dpi
prefix = bedfile.rsplit(".", 1)[0]
figname = prefix + "." + opts.format
if imagemap:
imgmapfile = prefix + '.map'
mapfh = open(imgmapfile, "w")
print >> mapfh, '<map id="' + prefix + '">'
if mappingfile:
mappings = DictFile(mappingfile, delimiter="\t")
classes = sorted(set(mappings.values()))
logging.debug("A total of {0} classes found: {1}".format(len(classes),
','.join(classes)))
else:
mappings = {}
classes = []
logging.debug("No classes registered (no id_mappings given).")
mycolors = "rgbymc"
class_colors = dict(zip(classes, mycolors))
bed = Bed(bedfile)
chr_lens = {}
centromeres = {}
for b, blines in groupby(bed, key=(lambda x: x.seqid)):
blines = list(blines)
maxlen = max(x.end for x in blines)
chr_lens[b] = maxlen
for b in bed:
accn = b.accn
if accn == "centromere":
centromeres[b.seqid] = b.start
if accn in mappings:
b.accn = mappings[accn]
else:
b.accn = '-'
chr_number = len(chr_lens)
if centromeres:
assert chr_number == len(centromeres)
fig = plt.figure(1, (w, h))
root = fig.add_axes([0, 0, 1, 1])
r = .7 # width and height of the whole chromosome set
xstart, ystart = .15, .85
xinterval = r / chr_number
xwidth = xinterval * .5 # chromosome width
max_chr_len = max(chr_lens.values())
ratio = r / max_chr_len # canvas / base
# first the chromosomes
for a, (chr, clen) in enumerate(sorted(chr_lens.items())):
xx = xstart + a * xinterval + .5 * xwidth
root.text(xx, ystart + .01, chr, ha="center")
if centromeres:
yy = ystart - centromeres[chr] * ratio
ChromosomeWithCentromere(root, xx, ystart, yy,
ystart - clen * ratio, width=xwidth)
else:
Chromosome(root, xx, ystart, ystart - clen * ratio, width=xwidth)
chr_idxs = dict((a, i) for i, a in enumerate(sorted(chr_lens.keys())))
alpha = .75
#.........这里部分代码省略.........