本文整理汇总了Python中jcvi.formats.base.DictFile.get方法的典型用法代码示例。如果您正苦于以下问题:Python DictFile.get方法的具体用法?Python DictFile.get怎么用?Python DictFile.get使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类jcvi.formats.base.DictFile
的用法示例。
在下文中一共展示了DictFile.get方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: rename
# 需要导入模块: from jcvi.formats.base import DictFile [as 别名]
# 或者: from jcvi.formats.base.DictFile import get [as 别名]
def rename(args):
"""
%prog rename in.gff3 switch.ids > reindexed.gff3
Change the IDs within the gff3.
"""
from jcvi.formats.base import DictFile
p = OptionParser(rename.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
ingff3, switch = args
switch = DictFile(switch)
gff = Gff(ingff3)
for g in gff:
id, = g.attributes["ID"]
newname = switch.get(id, id)
g.attributes["ID"] = [newname]
if "Parent" in g.attributes:
parents = g.attributes["Parent"]
g.attributes["Parent"] = [switch.get(x, x) for x in parents]
g.update_attributes()
print g
示例2: top10
# 需要导入模块: from jcvi.formats.base import DictFile [as 别名]
# 或者: from jcvi.formats.base.DictFile import get [as 别名]
def top10(args):
"""
%prog top10 blastfile.best
Count the most frequent 10 hits. Usually the BLASTFILE needs to be screened
the get the best match. You can also provide an .ids file to query the ids.
For example the ids file can contain the seqid to species mapping.
The ids file is two-column, and can sometimes be generated by
`jcvi.formats.fasta ids --description`.
"""
from jcvi.formats.base import DictFile
p = OptionParser(top10.__doc__)
p.add_option("--ids", default=None,
help="Two column ids file to query seqid [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
blastfile, = args
mapping = DictFile(opts.ids, delimiter="\t") if opts.ids else {}
cmd = "cut -f2 {0}".format(blastfile)
cmd += " | sort | uniq -c | sort -k1,1nr | head"
fp = popen(cmd)
for row in fp:
count, seqid = row.split()
nseqid = mapping.get(seqid, seqid)
print "\t".join((count, nseqid))
示例3: header
# 需要导入模块: from jcvi.formats.base import DictFile [as 别名]
# 或者: from jcvi.formats.base.DictFile import get [as 别名]
def header(args):
"""
%prog header map conversion_table
Rename lines in the map header. The mapping of old names to new names are
stored in two-column `conversion_table`.
"""
from jcvi.formats.base import DictFile
p = OptionParser(header.__doc__)
p.add_option("--prefix", default="",
help="Prepend text to line number [default: %default]")
p.add_option("--ids", help="Write ids to file [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
mstmap, conversion_table = args
data = MSTMap(mstmap)
hd = data.header
conversion = DictFile(conversion_table)
newhd = [opts.prefix + conversion.get(x, x) for x in hd]
print "\t".join(hd)
print "--->"
print "\t".join(newhd)
ids = opts.ids
if ids:
fw = open(ids, "w")
print >> fw, "\n".join(newhd)
fw.close()
示例4: libsvm
# 需要导入模块: from jcvi.formats.base import DictFile [as 别名]
# 或者: from jcvi.formats.base.DictFile import get [as 别名]
def libsvm(args):
"""
%prog libsvm csvfile prefix.ids
Convert csv file to LIBSVM format. `prefix.ids` contains the prefix mapping.
Ga -1
Gr 1
So the feature in the first column of csvfile get scanned with the prefix
and mapped to different classes. Formatting spec:
http://svmlight.joachims.org/
"""
from jcvi.formats.base import DictFile
p = OptionParser(libsvm.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
csvfile, prefixids = args
d = DictFile(prefixids)
fp = open(csvfile)
fp.next()
for row in fp:
atoms = row.split()
klass = atoms[0]
kp = klass.split("_")[0]
klass = d.get(kp, "0")
feats = ["{0}:{1}".format(i + 1, x) for i, x in enumerate(atoms[1:])]
print " ".join([klass] + feats)
示例5: covlen
# 需要导入模块: from jcvi.formats.base import DictFile [as 别名]
# 或者: from jcvi.formats.base.DictFile import get [as 别名]
def covlen(args):
"""
%prog covlen covfile fastafile
Plot coverage vs length. `covfile` is two-column listing contig id and
depth of coverage.
"""
import numpy as np
import pandas as pd
import seaborn as sns
from jcvi.formats.base import DictFile
p = OptionParser(covlen.__doc__)
p.add_option("--maxsize", default=1000000, type="int", help="Max contig size")
p.add_option("--maxcov", default=100, type="int", help="Max contig size")
p.add_option("--color", default='m', help="Color of the data points")
p.add_option("--kind", default="scatter",
choices=("scatter", "reg", "resid", "kde", "hex"),
help="Kind of plot to draw")
opts, args, iopts = p.set_image_options(args, figsize="8x8")
if len(args) != 2:
sys.exit(not p.print_help())
covfile, fastafile = args
cov = DictFile(covfile, cast=float)
s = Sizes(fastafile)
data = []
maxsize, maxcov = opts.maxsize, opts.maxcov
for ctg, size in s.iter_sizes():
c = cov.get(ctg, 0)
if size > maxsize:
continue
if c > maxcov:
continue
data.append((size, c))
x, y = zip(*data)
x = np.array(x)
y = np.array(y)
logging.debug("X size {0}, Y size {1}".format(x.size, y.size))
df = pd.DataFrame()
xlab, ylab = "Length", "Coverage of depth (X)"
df[xlab] = x
df[ylab] = y
sns.jointplot(xlab, ylab, kind=opts.kind, data=df,
xlim=(0, maxsize), ylim=(0, maxcov),
stat_func=None, edgecolor="w", color=opts.color)
figname = covfile + ".pdf"
savefig(figname, dpi=iopts.dpi, iopts=iopts)
示例6: summary
# 需要导入模块: from jcvi.formats.base import DictFile [as 别名]
# 或者: from jcvi.formats.base.DictFile import get [as 别名]
def summary(args):
"""
%prog summary diploid.napus.fractionation gmap.status
Provide summary of fractionation. `fractionation` file is generated with
loss(). `gmap.status` is generated with genestatus().
"""
from jcvi.formats.base import DictFile
from jcvi.utils.cbook import percentage, Registry
p = OptionParser(summary.__doc__)
p.add_option("--extra", help="Cross with extra tsv file [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
frfile, statusfile = args
status = DictFile(statusfile)
fp = open(frfile)
registry = Registry() # keeps all the tags for any given gene
for row in fp:
seqid, gene, tag = row.split()
if tag == '.':
registry[gene].append("outside")
else:
registry[gene].append("inside")
if tag[0] == '[':
registry[gene].append("no_syntenic_model")
if tag.startswith("[S]"):
registry[gene].append("[S]")
gstatus = status.get(gene, None)
if gstatus == 'complete':
registry[gene].append("complete")
elif gstatus == 'pseudogene':
registry[gene].append("pseudogene")
elif gstatus == 'partial':
registry[gene].append("partial")
else:
registry[gene].append("gmap_fail")
elif tag.startswith("[NS]"):
registry[gene].append("[NS]")
if "random" in tag or "Scaffold" in tag:
registry[gene].append("random")
else:
registry[gene].append("real_ns")
elif tag.startswith("[NF]"):
registry[gene].append("[NF]")
else:
registry[gene].append("syntenic_model")
inside = registry.count("inside")
outside = registry.count("outside")
syntenic = registry.count("syntenic_model")
non_syntenic = registry.count("no_syntenic_model")
s = registry.count("[S]")
ns = registry.count("[NS]")
nf = registry.count("[NF]")
complete = registry.count("complete")
pseudogene = registry.count("pseudogene")
partial = registry.count("partial")
gmap_fail = registry.count("gmap_fail")
random = registry.count("random")
real_ns = registry.count("real_ns")
complete_models = registry.get_tag("complete")
pseudogenes = registry.get_tag("pseudogene")
partial_deletions = registry.get_tag("partial")
m = "{0} inside synteny blocks\n".format(inside)
m += "{0} outside synteny blocks\n".format(outside)
m += "{0} has syntenic gene\n".format(syntenic)
m += "{0} lack syntenic gene\n".format(non_syntenic)
m += "{0} has sequence match in syntenic location\n".format(s)
m += "{0} has sequence match in non-syntenic location\n".format(ns)
m += "{0} has sequence match in un-ordered scaffolds\n".format(random)
m += "{0} has sequence match in real non-syntenic location\n".format(real_ns)
m += "{0} has no sequence match\n".format(nf)
m += "{0} syntenic sequence - complete model\n".format(percentage(complete, s))
m += "{0} syntenic sequence - partial model\n".format(percentage(partial, s))
m += "{0} syntenic sequence - pseudogene\n".format(percentage(pseudogene, s))
m += "{0} syntenic sequence - gmap fail\n".format(percentage(gmap_fail, s))
print >> sys.stderr, m
aa = ["complete_models", "partial_deletions", "pseudogenes"]
bb = [complete_models, partial_deletions, pseudogenes]
for a, b in zip(aa, bb):
fw = open(a, "w")
print >> fw, "\n".join(b)
fw.close()
extra = opts.extra
if extra:
registry.update_from(extra)
fp.seek(0)
fw = open("registry", "w")
for row in fp:
seqid, gene, tag = row.split()
ts = registry[gene]
#.........这里部分代码省略.........
示例7: merge
# 需要导入模块: from jcvi.formats.base import DictFile [as 别名]
# 或者: from jcvi.formats.base.DictFile import get [as 别名]
def merge(args):
"""
%prog merge protein-quartets registry LOST
Merge protein quartets table with dna quartets registry. This is specific
to the napus project.
"""
from jcvi.formats.base import DictFile
p = OptionParser(merge.__doc__)
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
quartets, registry, lost = args
qq = DictFile(registry, keypos=1, valuepos=3)
lost = DictFile(lost, keypos=1, valuepos=0, delimiter='|')
qq.update(lost)
fp = open(quartets)
cases = {
"AN,CN": 4,
"BO,AN,CN": 8,
"BO,CN": 2,
"BR,AN": 1,
"BR,AN,CN": 6,
"BR,BO": 3,
"BR,BO,AN": 5,
"BR,BO,AN,CN": 9,
"BR,BO,CN": 7,
}
ip = {
"syntenic_model": "Syntenic_model_excluded_by_OMG",
"complete": "Predictable",
"partial": "Truncated",
"pseudogene": "Pseudogene",
"random": "Match_random",
"real_ns": "Transposed",
"gmap_fail": "GMAP_fail",
"AN LOST": "AN_LOST",
"CN LOST": "CN_LOST",
"BR LOST": "BR_LOST",
"BO LOST": "BO_LOST",
"outside": "Outside_synteny_blocks",
"[NF]": "Not_found",
}
for row in fp:
atoms = row.strip().split("\t")
genes = atoms[:4]
tag = atoms[4]
a, b, c, d = [qq.get(x, ".").rsplit("-", 1)[-1] for x in genes]
qqs = [c, d, a, b]
for i, q in enumerate(qqs):
if atoms[i] != '.':
qqs[i] = "syntenic_model"
# Make comment
comment = "Case{0}".format(cases[tag])
dots = sum([1 for x in genes if x == '.'])
if dots == 1:
idx = genes.index(".")
status = qqs[idx]
status = ip[status]
comment += "-" + status
print row.strip() + "\t" + "\t".join(qqs + [comment])
示例8: sizes
# 需要导入模块: from jcvi.formats.base import DictFile [as 别名]
# 或者: from jcvi.formats.base.DictFile import get [as 别名]
def sizes(args):
"""
%prog sizes gaps.bed a.fasta b.fasta
Take the flanks of gaps within a.fasta, map them onto b.fasta. Compile the
results to the gap size estimates in b. The output is detailed below:
Columns are:
1. A scaffold
2. Start position
3. End position
4. Gap identifier
5. Gap size in A (= End - Start)
6. Gap size in B (based on BLAST, see below)
For each gap, I extracted the left and right sequence (mostly 2Kb, but can be shorter
if it runs into another gap) flanking the gap. The flanker names look like gap.00003L
and gap.00003R means the left and right flanker of this particular gap, respectively.
The BLAST output is used to calculate the gap size. For each flanker sequence, I took
the best hit, and calculate the inner distance between the L match range and R range.
The two flankers must map with at least 98% identity, and in the same orientation.
NOTE the sixth column in the list file is not always a valid number. Other values are:
- na: both flankers are missing in B
- Singleton: one flanker is missing
- Different chr: flankers map to different scaffolds
- Strand +|-: flankers map in different orientations
- Negative value: the R flanker map before L flanker
"""
from jcvi.formats.base import DictFile
from jcvi.apps.align import blast
p = OptionParser(sizes.__doc__)
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
gapsbed, afasta, bfasta = args
pf = gapsbed.rsplit(".", 1)[0]
extbed = pf + ".ext.bed"
extfasta = pf + ".ext.fasta"
if need_update(gapsbed, extfasta):
extbed, extfasta = flanks([gapsbed, afasta])
q = op.basename(extfasta).split(".")[0]
r = op.basename(bfasta).split(".")[0]
blastfile = "{0}.{1}.blast".format(q, r)
if need_update([extfasta, bfasta], blastfile):
blastfile = blast([bfasta, extfasta, "--wordsize=50", "--pctid=98"])
labelsfile = blast_to_twobeds(blastfile)
labels = DictFile(labelsfile, delimiter='\t')
bed = Bed(gapsbed)
for b in bed:
b.score = b.span
accn = b.accn
print "\t".join((str(x) for x in (b.seqid, b.start - 1, b.end, accn,
b.score, labels.get(accn, "na"))))