本文整理汇总了Python中jcvi.formats.base.DictFile类的典型用法代码示例。如果您正苦于以下问题:Python DictFile类的具体用法?Python DictFile怎么用?Python DictFile使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了DictFile类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: header
def header(args):
"""
%prog header map conversion_table
Rename lines in the map header. The mapping of old names to new names are
stored in two-column `conversion_table`.
"""
from jcvi.formats.base import DictFile
p = OptionParser(header.__doc__)
p.add_option("--prefix", default="",
help="Prepend text to line number [default: %default]")
p.add_option("--ids", help="Write ids to file [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
mstmap, conversion_table = args
data = MSTMap(mstmap)
hd = data.header
conversion = DictFile(conversion_table)
newhd = [opts.prefix + conversion.get(x, x) for x in hd]
print "\t".join(hd)
print "--->"
print "\t".join(newhd)
ids = opts.ids
if ids:
fw = open(ids, "w")
print >> fw, "\n".join(newhd)
fw.close()
示例2: top10
def top10(args):
"""
%prog top10 blastfile.best
Count the most frequent 10 hits. Usually the BLASTFILE needs to be screened
the get the best match. You can also provide an .ids file to query the ids.
For example the ids file can contain the seqid to species mapping.
The ids file is two-column, and can sometimes be generated by
`jcvi.formats.fasta ids --description`.
"""
from jcvi.formats.base import DictFile
p = OptionParser(top10.__doc__)
p.add_option("--ids", default=None,
help="Two column ids file to query seqid [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
blastfile, = args
mapping = DictFile(opts.ids, delimiter="\t") if opts.ids else {}
cmd = "cut -f2 {0}".format(blastfile)
cmd += " | sort | uniq -c | sort -k1,1nr | head"
fp = popen(cmd)
for row in fp:
count, seqid = row.split()
nseqid = mapping.get(seqid, seqid)
print "\t".join((count, nseqid))
示例3: libsvm
def libsvm(args):
"""
%prog libsvm csvfile prefix.ids
Convert csv file to LIBSVM format. `prefix.ids` contains the prefix mapping.
Ga -1
Gr 1
So the feature in the first column of csvfile get scanned with the prefix
and mapped to different classes. Formatting spec:
http://svmlight.joachims.org/
"""
from jcvi.formats.base import DictFile
p = OptionParser(libsvm.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
csvfile, prefixids = args
d = DictFile(prefixids)
fp = open(csvfile)
fp.next()
for row in fp:
atoms = row.split()
klass = atoms[0]
kp = klass.split("_")[0]
klass = d.get(kp, "0")
feats = ["{0}:{1}".format(i + 1, x) for i, x in enumerate(atoms[1:])]
print " ".join([klass] + feats)
示例4: rename
def rename(args):
"""
%prog rename in.gff3 switch.ids > reindexed.gff3
Change the IDs within the gff3.
"""
from jcvi.formats.base import DictFile
p = OptionParser(rename.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
ingff3, switch = args
switch = DictFile(switch)
gff = Gff(ingff3)
for g in gff:
id, = g.attributes["ID"]
newname = switch.get(id, id)
g.attributes["ID"] = [newname]
if "Parent" in g.attributes:
parents = g.attributes["Parent"]
g.attributes["Parent"] = [switch.get(x, x) for x in parents]
g.update_attributes()
print g
示例5: fillrbh
def fillrbh(args):
from jcvi.formats.base import DictFile
p = OptionParser(fillrbh.__doc__)
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
blocksfile, rbhfile, orthofile = args
# Generate mapping both ways
adict = DictFile(rbhfile)
bdict = DictFile(rbhfile, keypos=1, valuepos=0)
adict.update(bdict)
fp = open(blocksfile)
fw = open(orthofile, "w")
nrecruited = 0
for row in fp:
a, b = row.split()
if b == '.':
if a in adict:
b = adict[a]
nrecruited += 1
b += "'"
print("\t".join((a, b)), file=fw)
logging.debug("Recruited {0} pairs from RBH.".format(nrecruited))
fp.close()
fw.close()
示例6: covlen
def covlen(args):
"""
%prog covlen covfile fastafile
Plot coverage vs length. `covfile` is two-column listing contig id and
depth of coverage.
"""
import numpy as np
import pandas as pd
import seaborn as sns
from jcvi.formats.base import DictFile
p = OptionParser(covlen.__doc__)
p.add_option("--maxsize", default=1000000, type="int", help="Max contig size")
p.add_option("--maxcov", default=100, type="int", help="Max contig size")
p.add_option("--color", default='m', help="Color of the data points")
p.add_option("--kind", default="scatter",
choices=("scatter", "reg", "resid", "kde", "hex"),
help="Kind of plot to draw")
opts, args, iopts = p.set_image_options(args, figsize="8x8")
if len(args) != 2:
sys.exit(not p.print_help())
covfile, fastafile = args
cov = DictFile(covfile, cast=float)
s = Sizes(fastafile)
data = []
maxsize, maxcov = opts.maxsize, opts.maxcov
for ctg, size in s.iter_sizes():
c = cov.get(ctg, 0)
if size > maxsize:
continue
if c > maxcov:
continue
data.append((size, c))
x, y = zip(*data)
x = np.array(x)
y = np.array(y)
logging.debug("X size {0}, Y size {1}".format(x.size, y.size))
df = pd.DataFrame()
xlab, ylab = "Length", "Coverage of depth (X)"
df[xlab] = x
df[ylab] = y
sns.jointplot(xlab, ylab, kind=opts.kind, data=df,
xlim=(0, maxsize), ylim=(0, maxcov),
stat_func=None, edgecolor="w", color=opts.color)
figname = covfile + ".pdf"
savefig(figname, dpi=iopts.dpi, iopts=iopts)
示例7: make_ortholog
def make_ortholog(blocksfile, rbhfile, orthofile):
from jcvi.formats.base import DictFile
# Generate mapping both ways
adict = DictFile(rbhfile)
bdict = DictFile(rbhfile, keypos=1, valuepos=0)
adict.update(bdict)
fp = open(blocksfile)
fw = open(orthofile, "w")
nrecruited = 0
for row in fp:
a, b = row.split()
if b == '.':
if a in adict:
b = adict[a]
nrecruited += 1
b += "'"
print >> fw, "\t".join((a, b))
logging.debug("Recruited {0} pairs from RBH.".format(nrecruited))
fp.close()
fw.close()
示例8: genestats
def genestats(args):
"""
%prog genestats gffile
Print summary stats, including:
- Number of genes
- Number of single-exon genes
- Number of multi-exon genes
- Number of distinct exons
- Number of genes with alternative transcript variants
- Number of predicted transcripts
- Mean number of distinct exons per gene
- Mean number of transcripts per gene
- Mean gene locus size (first to last exon)
- Mean transcript size (UTR, CDS)
- Mean exon size
Stats modeled after barley genome paper Table 1.
A physical, genetic and functional sequence assembly of the barley genome
"""
p = OptionParser(genestats.__doc__)
p.add_option("--groupby", default="conf_class",
help="Print separate stats groupby")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
gff_file, = args
gb = opts.groupby
g = make_index(gff_file)
tf = "transcript.sizes"
if need_update(gff_file, tf):
fw = open(tf, "w")
for feat in g.features_of_type("mRNA"):
fid = feat.id
conf_class = feat.attributes.get(gb, "all")
tsize = sum((c.stop - c.start + 1) for c in g.children(fid, 1) \
if c.featuretype == "exon")
print >> fw, "\t".join((fid, str(tsize), conf_class))
fw.close()
tsizes = DictFile(tf, cast=int)
conf_classes = DictFile(tf, valuepos=2)
logging.debug("A total of {0} transcripts populated.".format(len(tsizes)))
genes = []
for feat in g.features_of_type("gene"):
fid = feat.id
transcripts = [c.id for c in g.children(fid, 1) \
if c.featuretype == "mRNA"]
transcript_sizes = [tsizes[x] for x in transcripts]
exons = set((c.chrom, c.start, c.stop) for c in g.children(fid, 2) \
if c.featuretype == "exon")
conf_class = conf_classes[transcripts[0]]
gs = GeneStats(feat, conf_class, transcript_sizes, exons)
genes.append(gs)
r = {} # Report
distinct_groups = set(conf_classes.values())
for g in distinct_groups:
num_genes = num_single_exon_genes = num_multi_exon_genes = 0
num_genes_with_alts = num_transcripts = num_exons = 0
cum_locus_size = cum_transcript_size = cum_exon_size = 0
for gs in genes:
if gs.conf_class != g:
continue
num_genes += 1
if gs.num_exons == 1:
num_single_exon_genes += 1
else:
num_multi_exon_genes += 1
num_exons += gs.num_exons
if gs.num_transcripts > 1:
num_genes_with_alts += 1
num_transcripts += gs.num_transcripts
cum_locus_size += gs.locus_size
cum_transcript_size += gs.cum_transcript_size
cum_exon_size += gs.cum_exon_size
mean_num_exons = num_exons * 1. / num_genes
mean_num_transcripts = num_transcripts * 1. / num_genes
mean_locus_size = cum_locus_size * 1. / num_genes
mean_transcript_size = cum_transcript_size * 1. / num_transcripts
mean_exon_size = cum_exon_size * 1. / num_exons
r[("Number of genes", g)] = num_genes
r[("Number of single-exon genes", g)] = \
percentage(num_single_exon_genes, num_genes, mode=1)
r[("Number of multi-exon genes", g)] = \
percentage(num_multi_exon_genes, num_genes, mode=1)
r[("Number of distinct exons", g)] = num_exons
r[("Number of genes with alternative transcript variants", g)] = \
percentage(num_genes_with_alts, num_genes, mode=1)
r[("Number of predicted transcripts", g)] = num_transcripts
r[("Mean number of distinct exons per gene", g)] = mean_num_exons
r[("Mean number of transcripts per gene", g)] = mean_num_transcripts
r[("Mean gene locus size (first to last exon)", g)] = mean_locus_size
r[("Mean transcript size (UTR, CDS)", g)] = mean_transcript_size
#.........这里部分代码省略.........
示例9: htg
def htg(args):
"""
%prog htg fastafile template.sbt
Prepare sqnfiles for Genbank HTG submission to update existing records.
`fastafile` contains the records to update, multiple records are allowed
(with each one generating separate sqn file in the sqn/ folder). The record
defline has the accession ID. For example,
>AC148290.3
Internally, this generates two additional files (phasefile and namesfile)
and download records from Genbank. Below is implementation details:
`phasefile` contains, for each accession, phase information. For example:
AC148290.3 3 HTG 2 mth2-45h12
which means this is a Phase-3 BAC. Record with only a single contig will be
labeled as Phase-3 regardless of the info in the `phasefile`. Template file
is the Genbank sbt template. See jcvi.formats.sbt for generation of such
files.
Another problem is that Genbank requires the name of the sequence to stay
the same when updating and will kick back with a table of name conflicts.
For example:
We are unable to process the updates for these entries
for the following reason:
Seqname has changed
Accession Old seq_name New seq_name
--------- ------------ ------------
AC239792 mtg2_29457 AC239792.1
To prepare a submission, this script downloads genbank and asn.1 format,
and generate the phase file and the names file (use formats.agp.phase() and
apps.gbsubmit.asn(), respectively). These get automatically run.
However, use --phases if the genbank files contain outdated information.
For example, the clone name changes or phase upgrades. In this case, run
formats.agp.phase() manually, modify the phasefile and use --phases to override.
"""
from jcvi.formats.fasta import sequin, ids
from jcvi.formats.agp import phase
from jcvi.apps.fetch import entrez
p = OptionParser(htg.__doc__)
p.add_option("--phases", default=None,
help="Use another phasefile to override [default: %default]")
p.add_option("--comment", default="",
help="Comments for this update [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
fastafile, sbtfile = args
pf = fastafile.rsplit(".", 1)[0]
idsfile = pf + ".ids"
phasefile = pf + ".phases"
namesfile = pf + ".names"
ids([fastafile, "--outfile={0}".format(idsfile)])
asndir = "asn.1"
mkdir(asndir)
entrez([idsfile, "--format=asn.1", "--outdir={0}".format(asndir)])
asn(glob("{0}/*".format(asndir)) + \
["--outfile={0}".format(namesfile)])
if opts.phases is None:
gbdir = "gb"
mkdir(gbdir)
entrez([idsfile, "--format=gb", "--outdir={0}".format(gbdir)])
phase(glob("{0}/*".format(gbdir)) + \
["--outfile={0}".format(phasefile)])
else:
phasefile = opts.phases
assert op.exists(namesfile) and op.exists(phasefile)
newphasefile = phasefile + ".new"
newphasefw = open(newphasefile, "w")
comment = opts.comment
fastadir = "fasta"
sqndir = "sqn"
mkdir(fastadir)
mkdir(sqndir)
from jcvi.graphics.histogram import stem_leaf_plot
names = DictFile(namesfile)
assert len(set(names.keys())) == len(set(names.values()))
phases = DictFile(phasefile)
ph = [int(x) for x in phases.values()]
# vmin 1, vmax 4, bins 3
#.........这里部分代码省略.........
示例10: update_from
def update_from(self, filename):
from jcvi.formats.base import DictFile
d = DictFile(filename)
for k, v in d.items():
self[k].append(v)
示例11: summary
def summary(args):
"""
%prog summary diploid.napus.fractionation gmap.status
Provide summary of fractionation. `fractionation` file is generated with
loss(). `gmap.status` is generated with genestatus().
"""
from jcvi.formats.base import DictFile
from jcvi.utils.cbook import percentage, Registry
p = OptionParser(summary.__doc__)
p.add_option("--extra", help="Cross with extra tsv file [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
frfile, statusfile = args
status = DictFile(statusfile)
fp = open(frfile)
registry = Registry() # keeps all the tags for any given gene
for row in fp:
seqid, gene, tag = row.split()
if tag == '.':
registry[gene].append("outside")
else:
registry[gene].append("inside")
if tag[0] == '[':
registry[gene].append("no_syntenic_model")
if tag.startswith("[S]"):
registry[gene].append("[S]")
gstatus = status.get(gene, None)
if gstatus == 'complete':
registry[gene].append("complete")
elif gstatus == 'pseudogene':
registry[gene].append("pseudogene")
elif gstatus == 'partial':
registry[gene].append("partial")
else:
registry[gene].append("gmap_fail")
elif tag.startswith("[NS]"):
registry[gene].append("[NS]")
if "random" in tag or "Scaffold" in tag:
registry[gene].append("random")
else:
registry[gene].append("real_ns")
elif tag.startswith("[NF]"):
registry[gene].append("[NF]")
else:
registry[gene].append("syntenic_model")
inside = registry.count("inside")
outside = registry.count("outside")
syntenic = registry.count("syntenic_model")
non_syntenic = registry.count("no_syntenic_model")
s = registry.count("[S]")
ns = registry.count("[NS]")
nf = registry.count("[NF]")
complete = registry.count("complete")
pseudogene = registry.count("pseudogene")
partial = registry.count("partial")
gmap_fail = registry.count("gmap_fail")
random = registry.count("random")
real_ns = registry.count("real_ns")
complete_models = registry.get_tag("complete")
pseudogenes = registry.get_tag("pseudogene")
partial_deletions = registry.get_tag("partial")
m = "{0} inside synteny blocks\n".format(inside)
m += "{0} outside synteny blocks\n".format(outside)
m += "{0} has syntenic gene\n".format(syntenic)
m += "{0} lack syntenic gene\n".format(non_syntenic)
m += "{0} has sequence match in syntenic location\n".format(s)
m += "{0} has sequence match in non-syntenic location\n".format(ns)
m += "{0} has sequence match in un-ordered scaffolds\n".format(random)
m += "{0} has sequence match in real non-syntenic location\n".format(real_ns)
m += "{0} has no sequence match\n".format(nf)
m += "{0} syntenic sequence - complete model\n".format(percentage(complete, s))
m += "{0} syntenic sequence - partial model\n".format(percentage(partial, s))
m += "{0} syntenic sequence - pseudogene\n".format(percentage(pseudogene, s))
m += "{0} syntenic sequence - gmap fail\n".format(percentage(gmap_fail, s))
print >> sys.stderr, m
aa = ["complete_models", "partial_deletions", "pseudogenes"]
bb = [complete_models, partial_deletions, pseudogenes]
for a, b in zip(aa, bb):
fw = open(a, "w")
print >> fw, "\n".join(b)
fw.close()
extra = opts.extra
if extra:
registry.update_from(extra)
fp.seek(0)
fw = open("registry", "w")
for row in fp:
seqid, gene, tag = row.split()
ts = registry[gene]
#.........这里部分代码省略.........
示例12: merge
def merge(args):
"""
%prog merge protein-quartets registry LOST
Merge protein quartets table with dna quartets registry. This is specific
to the napus project.
"""
from jcvi.formats.base import DictFile
p = OptionParser(merge.__doc__)
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
quartets, registry, lost = args
qq = DictFile(registry, keypos=1, valuepos=3)
lost = DictFile(lost, keypos=1, valuepos=0, delimiter='|')
qq.update(lost)
fp = open(quartets)
cases = {
"AN,CN": 4,
"BO,AN,CN": 8,
"BO,CN": 2,
"BR,AN": 1,
"BR,AN,CN": 6,
"BR,BO": 3,
"BR,BO,AN": 5,
"BR,BO,AN,CN": 9,
"BR,BO,CN": 7,
}
ip = {
"syntenic_model": "Syntenic_model_excluded_by_OMG",
"complete": "Predictable",
"partial": "Truncated",
"pseudogene": "Pseudogene",
"random": "Match_random",
"real_ns": "Transposed",
"gmap_fail": "GMAP_fail",
"AN LOST": "AN_LOST",
"CN LOST": "CN_LOST",
"BR LOST": "BR_LOST",
"BO LOST": "BO_LOST",
"outside": "Outside_synteny_blocks",
"[NF]": "Not_found",
}
for row in fp:
atoms = row.strip().split("\t")
genes = atoms[:4]
tag = atoms[4]
a, b, c, d = [qq.get(x, ".").rsplit("-", 1)[-1] for x in genes]
qqs = [c, d, a, b]
for i, q in enumerate(qqs):
if atoms[i] != '.':
qqs[i] = "syntenic_model"
# Make comment
comment = "Case{0}".format(cases[tag])
dots = sum([1 for x in genes if x == '.'])
if dots == 1:
idx = genes.index(".")
status = qqs[idx]
status = ip[status]
comment += "-" + status
print row.strip() + "\t" + "\t".join(qqs + [comment])
示例13: sizes
def sizes(args):
"""
%prog sizes gaps.bed a.fasta b.fasta
Take the flanks of gaps within a.fasta, map them onto b.fasta. Compile the
results to the gap size estimates in b. The output is detailed below:
Columns are:
1. A scaffold
2. Start position
3. End position
4. Gap identifier
5. Gap size in A (= End - Start)
6. Gap size in B (based on BLAST, see below)
For each gap, I extracted the left and right sequence (mostly 2Kb, but can be shorter
if it runs into another gap) flanking the gap. The flanker names look like gap.00003L
and gap.00003R means the left and right flanker of this particular gap, respectively.
The BLAST output is used to calculate the gap size. For each flanker sequence, I took
the best hit, and calculate the inner distance between the L match range and R range.
The two flankers must map with at least 98% identity, and in the same orientation.
NOTE the sixth column in the list file is not always a valid number. Other values are:
- na: both flankers are missing in B
- Singleton: one flanker is missing
- Different chr: flankers map to different scaffolds
- Strand +|-: flankers map in different orientations
- Negative value: the R flanker map before L flanker
"""
from jcvi.formats.base import DictFile
from jcvi.apps.align import blast
p = OptionParser(sizes.__doc__)
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
gapsbed, afasta, bfasta = args
pf = gapsbed.rsplit(".", 1)[0]
extbed = pf + ".ext.bed"
extfasta = pf + ".ext.fasta"
if need_update(gapsbed, extfasta):
extbed, extfasta = flanks([gapsbed, afasta])
q = op.basename(extfasta).split(".")[0]
r = op.basename(bfasta).split(".")[0]
blastfile = "{0}.{1}.blast".format(q, r)
if need_update([extfasta, bfasta], blastfile):
blastfile = blast([bfasta, extfasta, "--wordsize=50", "--pctid=98"])
labelsfile = blast_to_twobeds(blastfile)
labels = DictFile(labelsfile, delimiter='\t')
bed = Bed(gapsbed)
for b in bed:
b.score = b.span
accn = b.accn
print "\t".join((str(x) for x in (b.seqid, b.start - 1, b.end, accn,
b.score, labels.get(accn, "na"))))
示例14: main
def main():
"""
%prog bedfile id_mappings
Takes a bedfile that contains the coordinates of features to plot on the
chromosomes, and `id_mappings` file that map the ids to certain class. Each
class will get assigned a unique color. `id_mappings` file is optional (if
omitted, will not paint the chromosome features, except the centromere).
"""
p = OptionParser(main.__doc__)
p.add_option("--title", default="Medicago truncatula v3.5",
help="title of the image [default: `%default`]")
p.add_option("--gauge", default=False, action="store_true",
help="draw a gauge with size label [default: %default]")
p.add_option("--imagemap", default=False, action="store_true",
help="generate an HTML image map associated with the image [default: %default]")
p.add_option("--winsize", default=50000, type="int",
help="if drawing an imagemap, specify the window size (bases) of each map element "
"[default: %default bp]")
p.add_option("--empty", help="Write legend for unpainted region")
opts, args, iopts = p.set_image_options(figsize="6x6", dpi=300)
if len(args) not in (1, 2):
sys.exit(p.print_help())
bedfile = args[0]
mappingfile = None
if len(args) == 2:
mappingfile = args[1]
winsize = opts.winsize
imagemap = opts.imagemap
w, h = iopts.w, iopts.h
dpi = iopts.dpi
prefix = bedfile.rsplit(".", 1)[0]
figname = prefix + "." + opts.format
if imagemap:
imgmapfile = prefix + '.map'
mapfh = open(imgmapfile, "w")
print >> mapfh, '<map id="' + prefix + '">'
if mappingfile:
mappings = DictFile(mappingfile, delimiter="\t")
classes = sorted(set(mappings.values()))
logging.debug("A total of {0} classes found: {1}".format(len(classes),
','.join(classes)))
else:
mappings = {}
classes = []
logging.debug("No classes registered (no id_mappings given).")
mycolors = "rgbymc"
class_colors = dict(zip(classes, mycolors))
bed = Bed(bedfile)
chr_lens = {}
centromeres = {}
for b, blines in groupby(bed, key=(lambda x: x.seqid)):
blines = list(blines)
maxlen = max(x.end for x in blines)
chr_lens[b] = maxlen
for b in bed:
accn = b.accn
if accn == "centromere":
centromeres[b.seqid] = b.start
if accn in mappings:
b.accn = mappings[accn]
else:
b.accn = '-'
chr_number = len(chr_lens)
if centromeres:
assert chr_number == len(centromeres)
fig = plt.figure(1, (w, h))
root = fig.add_axes([0, 0, 1, 1])
r = .7 # width and height of the whole chromosome set
xstart, ystart = .15, .85
xinterval = r / chr_number
xwidth = xinterval * .5 # chromosome width
max_chr_len = max(chr_lens.values())
ratio = r / max_chr_len # canvas / base
# first the chromosomes
for a, (chr, clen) in enumerate(sorted(chr_lens.items())):
xx = xstart + a * xinterval + .5 * xwidth
root.text(xx, ystart + .01, chr, ha="center")
if centromeres:
yy = ystart - centromeres[chr] * ratio
ChromosomeWithCentromere(root, xx, ystart, yy,
ystart - clen * ratio, width=xwidth)
else:
Chromosome(root, xx, ystart, ystart - clen * ratio, width=xwidth)
chr_idxs = dict((a, i) for i, a in enumerate(sorted(chr_lens.keys())))
alpha = .75
#.........这里部分代码省略.........
示例15: get_hg38_chromsizes
def get_hg38_chromsizes(filename=datafile("hg38.chrom.sizes")):
chromsizes = DictFile(filename)
chromsizes = dict((k, int(v)) for k, v in chromsizes.items())
return chromsizes