本文整理汇总了Python中hpelm.HPELM.predict方法的典型用法代码示例。如果您正苦于以下问题:Python HPELM.predict方法的具体用法?Python HPELM.predict怎么用?Python HPELM.predict使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类hpelm.HPELM
的用法示例。
在下文中一共展示了HPELM.predict方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_Predict_Works
# 需要导入模块: from hpelm import HPELM [as 别名]
# 或者: from hpelm.HPELM import predict [as 别名]
def test_Predict_Works(self):
X = self.makeh5(np.array([[1, 2], [3, 4], [5, 6], [7, 8]]))
T = self.makeh5(np.array([[1], [2], [3], [4]]))
hpelm = HPELM(2, 1)
hpelm.add_neurons(1, "lin")
hpelm.train(X, T)
fY = self.makefile()
hpelm.predict(X, fY)
示例2: test_ParallelBasicPython_Works
# 需要导入模块: from hpelm import HPELM [as 别名]
# 或者: from hpelm.HPELM import predict [as 别名]
def test_ParallelBasicPython_Works(self):
X = np.random.rand(1000, 10)
T = np.random.rand(1000, 3)
hX = modules.make_hdf5(X, self.fnameX)
hT = modules.make_hdf5(T, self.fnameT)
model0 = HPELM(10, 3)
model0.add_neurons(10, 'lin')
model0.add_neurons(5, 'tanh')
model0.add_neurons(15, 'sigm')
model0.save(self.fmodel)
model1 = HPELM(10, 3)
model1.load(self.fmodel)
os.remove(self.fnameHT)
os.remove(self.fnameHH)
model1.add_data(self.fnameX, self.fnameT, istart=0, icount=100, fHH=self.fnameHH, fHT=self.fnameHT)
model2 = HPELM(10, 3)
model2.load(self.fmodel)
model2.add_data(self.fnameX, self.fnameT, istart=100, icount=900, fHH=self.fnameHH, fHT=self.fnameHT)
model3 = HPELM(10, 3)
model3.load(self.fmodel)
model3.solve_corr(self.fnameHH, self.fnameHT)
model3.save(self.fmodel)
model4 = HPELM(10, 3)
model4.load(self.fmodel)
model4.predict(self.fnameX, self.fnameY)
err = model4.error(self.fnameT, self.fnameY, istart=0, icount=198)
self.assertLess(err, 1)
err = model4.error(self.fnameT, self.fnameY, istart=379, icount=872)
self.assertLess(err, 1)
示例3: start
# 需要导入模块: from hpelm import HPELM [as 别名]
# 或者: from hpelm.HPELM import predict [as 别名]
def start():
pairs = MapperUtil.get_allpairs() # Get pairs starting from 0th line
if not pairs:
print ("No pairs found.")
sys.exit()
p = pyaudio.PyAudio() # Create a PyAudio session
# Create a stream
stream = p.open(format=FORMAT,
channels=CHANNELS,
rate=RATE,
output=True)
#H2V_cursor = NeuralNetUtil.get_neurons("H2V")
elmH2V = None
# Loop over the pairs coming from CROSSMODAL
for pair in pairs:
#time.sleep(0.5) # Wait 0.5 seconds to prevent aggressive loop
print pair
if pair['direction'] == "H2V":
print "____________________________________________________________\n"
print pair['timestamp1']
hearing_memory = HearingMemoryUtil.get_memory(pair['timestamp1'])
hearing_memory = hearing_memory.next()['data']
#print hearing_memory.next()['data']
#chunky_array = numpy.fromstring(hearing_memory.next()['data'], 'int16')
#print chunky_array
stream.write(hearing_memory)
numpy_audio = numpy.fromstring(hearing_memory, numpy.uint8)
#print numpy_audio
print "Audio: ",numpy_audio.shape
#print numpy.transpose(numpy_audio.reshape((numpy_audio.shape[0],1))).shape
vision_memory = VisionMemoryUtil.get_memory(pair['timestamp2'])
vision_memory = vision_memory.next()
frame_amodal = numpy.fromstring(vision_memory['amodal'], numpy.uint8)
print "Frame Threshold: ",frame_amodal.shape
cv2.imshow("Frame Threshhold", frame_amodal.reshape(360,640))
cv2.moveWindow("Frame Threshhold",50,100)
frame_color = numpy.fromstring(vision_memory['color'], numpy.uint8)
print "Frame Delta Colored: ",frame_color.shape
cv2.imshow("Frame Delta Colored", frame_color.reshape(360,640,3))
cv2.moveWindow("Frame Delta Colored",1200,100)
key = cv2.waitKey(500) & 0xFF
#time.sleep(2.0)
modulo = numpy_audio.shape[0] % RATE
numpy_audio = numpy_audio[:-modulo]
for one_second in numpy.array_split(numpy_audio, int(numpy_audio.shape[0] / RATE)):
X = numpy.transpose(one_second.reshape((one_second.shape[0],1)))
T = numpy.transpose(frame_amodal.reshape((frame_amodal.shape[0],1)))
X = X.astype(numpy.float32, copy=False)
T = T.astype(numpy.float32, copy=False)
X[0] = X[0] / X[0].max()
T[0] = T[0] / T[0].max()
print X.shape
print T.shape
if elmH2V is None:
elmH2V = HPELM(X.shape[1],T.shape[1])
if os.path.exists(os.path.expanduser("~/CerebralCortexH2V.pkl")):
#elmH2V.nnet.neurons = H2V_cursor.next()['neurons']
elmH2V.load(os.path.expanduser("~/CerebralCortexH2V.pkl"))
else:
elmH2V.add_neurons(100, "sigm")
elmH2V.train(X, T, "LOO")
print elmH2V.predict(X)
cv2.imshow(">>>PREDICTION<<<", numpy.transpose(elmH2V.predict(X)).reshape(360,640))
cv2.moveWindow(">>>PREDICTION<<<",50,550)
print elmH2V.nnet.neurons
elmH2V.save(os.path.expanduser("~/CerebralCortexH2V.pkl"))