本文整理汇总了Python中gurobipy.Model.write方法的典型用法代码示例。如果您正苦于以下问题:Python Model.write方法的具体用法?Python Model.write怎么用?Python Model.write使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类gurobipy.Model
的用法示例。
在下文中一共展示了Model.write方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: solve
# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import write [as 别名]
def solve(budget, buses, lines, u, c, b, S, D):
m = Model('inhibit')
w, v, y = {}, {}, {}
for i in buses:
w[i] = m.addVar(vtype=GRB.BINARY, name="w_%s" % i)
for i, j in lines:
v[i, j] = m.addVar(vtype=GRB.BINARY, name='v_%s_%s' % (i, j))
y[i, j] = m.addVar(vtype=GRB.BINARY, name='y_%s_%s' % (i, j))
m.update()
for i, j in lines:
m.addConstr(w[i]-w[j] <= v[i, j] + y[i, j], 'balance1_%s_%s' % (i, j))
m.addConstr(w[j]-w[i] <= v[i, j] + y[i, j], 'balance2_%s_%s' % (i, j))
m.addConstr(quicksum(c[i, j]*y[i, j] for i, j in lines) <= budget, 'budget')
m.setObjective(quicksum(u[i, j]*v[i, j] for i, j in lines) +
quicksum(b[i]*(1-w[i]) for i in S) -
quicksum(b[i]*w[i] for i in D))
m.setParam('OutputFlag', 0)
m.optimize()
m.write('gurobi.lp')
return w, v, y, m
示例2: BFPBackupNetwork_Continuous
# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import write [as 别名]
#.........这里部分代码省略.........
elif i == d:
self.model.addConstr(
quicksum(self.bBackupLink[i, j, s, d] for i, j in self.Links.select(i, "*"))
- quicksum(self.bBackupLink[j, i, s, d] for j, i in self.Links.select("*", i))
== -1,
"Flow2[%s,%s,%s]" % (i, s, d),
)
# Flow conservation constraints
else:
self.model.addConstr(
quicksum(self.bBackupLink[i, j, s, d] for i, j in self.Links.select(i, "*"))
- quicksum(self.bBackupLink[j, i, s, d] for j, i in self.Links.select("*", i))
== 0,
"Flow3[%s,%s,%s]" % (i, s, d),
)
self.model.update()
def Optimize(self, MipGap=None, TimeLimit=None, LogLevel=None):
""" Optimize the defined model.
Parameters
----------
MipGap : desired gap
TimeLimit : time limit
LogLevel: log level 1 for printing all optimal variables and None otherwise
Returns
-------
BackupCapacity: The total capacity assigned per backup link
BackupRoutes: The set of selected backup links
A tuple list with all paths for edge (s,d) that uses (i,j).
"""
self.model.write("bpbackup.lp")
if MipGap != None:
self.model.params.MIPGap = MipGap
if TimeLimit != None:
self.model.params.timeLimit = TimeLimit
# Compute optimal solution
self.model.optimize()
# Print solution
if self.model.status == GRB.Status.OPTIMAL:
if LogLevel == 1:
for v in self.model.getVars():
print("%s %g" % (v.varName, v.x))
self.BackupCapacitySolution = self.model.getAttr("x", self.BackupCapacity)
self.BackupRoutesSolution = self.model.getAttr("x", self.bBackupLink)
self.BackupLinksSolution = {}
self.HatBackupCapacity = {}
for link in self.BackupCapacitySolution:
if self.BackupCapacitySolution[link] < 1 and self.BackupCapacitySolution[link] > 0.001:
self.HatBackupCapacity[link] = math.ceil(self.BackupCapacitySolution[link])
else:
self.HatBackupCapacity[link] = math.floor(self.BackupCapacitySolution[link])
if self.HatBackupCapacity[link] > 0:
if len(self.BackupLinksSolution) == 0:
self.BackupLinksSolution = [link]
else:
self.BackupLinksSolution = self.BackupLinksSolution + [link]
else:
print("Optimal value not found!\n")
示例3: Guroby
# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import write [as 别名]
#.........这里部分代码省略.........
for sourcePhase in xrange(range_source): # source/prod/out normaux
if sourcePhase > 0:
pred_prod += prod_list[sourcePhase - 1]
pred_cons = 0
cons = 0
for targetPhase in xrange(range_target): # target/cons/in normaux
cons += cons_list[targetPhase]
if targetPhase > 0:
pred_cons += cons_list[targetPhase - 1]
w = cons - pred_prod - arc_gcd
if self.dataflow.is_pcg:
w += pred_cons + threshold_list[targetPhase] - cons
str_v1 = str(source) + "/" + str(sourcePhase)
str_v2 = str(target) + "/" + str(targetPhase)
self.__add_row(str_v1, str_v2, arc, w)
# END FILL ROW
def __create_obj(self):
obj = QuadExpr()
for arc in self.dataflow.get_arc_list():
obj += self.col_m0[arc]
self.prob.setObjective(obj, GRB.MINIMIZE)
def __solve_prob(self): # Launch the solver and set preload of the graph
logging.info("loading matrix ...")
self.prob.update()
if self.lp_filename is not None:
problem_location = str(self.prob.write(self.lp_filename))
logging.info("Writing problem: " + str(problem_location))
logging.info("solving problem ...")
self.prob.optimize()
logging.info("Integer solving done !")
self.Z = self.prob.objVal
for arc in self.dataflow.get_arc_list():
if not self.dataflow.is_arc_reentrant(arc):
self.dataflow.set_initial_marking(arc, int(self.col_m0[arc].x))
logging.info("SC1 MIP Mem tot (no reentrant): " + str(self.Z))
# Add a variable lamda
def __add_col_v(self, name):
var = self.prob.addVar(vtype=GRB.CONTINUOUS, name=name)
self.col_v[name] = var
# Add a variable M0
def __add_col_m0(self, arc):
var = self.prob.addVar(lb=0, vtype=GRB.INTEGER)
self.col_m0[arc] = var
# Add a variable FM0
def __add_col_fm0(self, arc):
var = self.prob.addVar(lb=0, vtype=GRB.INTEGER)
self.col_fm0[arc] = var
# Add a constraint: lambda1 - lambda2 + M0 > W1
def __add_row(self, str_v1, str_v2, arc, w):
expr = LinExpr()
示例4: run_algorithm
# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import write [as 别名]
def run_algorithm(self):
old_M = self.M
old_items = [i.copy() for i in self.items]
map_name_to_old_item = dict()
for i in old_items:
map_name_to_old_item[i.name] = i
self.scale_items_by_cost()
from gurobipy import Model, GRB
model = Model("NP-Hard")
print("Setting Model Parameters")
# set timeout
model.setParam('TimeLimit', 1600)
model.setParam('MIPFocus', 3)
model.setParam('PrePasses', 1)
model.setParam('Heuristics', 0.01)
model.setParam('Method', 0)
map_name_to_item = dict()
map_name_to_cost = dict()
map_name_to_weight = dict()
map_name_to_profit = dict()
map_class_to_name = dict()
item_names = list()
print("Preprocessing data for model...")
for item in self.items:
item_names.append(item.name)
map_name_to_item[item.name] = item
map_name_to_cost[item.name] = item.cost
map_name_to_weight[item.name] = item.weight
map_name_to_profit[item.name] = item.profit
if item.classNumber not in map_class_to_name:
map_class_to_name[item.classNumber] = list()
map_class_to_name[item.classNumber].append(item.name)
class_numbers = list(map_class_to_name.keys())
print("Setting model variables...")
# binary variables =1, if use>0
items = model.addVars(item_names, vtype=GRB.BINARY, name="items")
classes = model.addVars(class_numbers, vtype=GRB.BINARY, name="class numbers")
print("Setting model objective...")
# maximize profit
objective = items.prod(map_name_to_profit)
model.setObjective(objective, GRB.MAXIMIZE)
# constraints
print("Setting model constraints")
model.addConstr(items.prod(map_name_to_weight) <= self.P,"weight capacity")
model.addConstr(items.prod(map_name_to_cost) <= self.M,"cost capacity")
# if any item from a class is chosen, that class variable has to be a binary of 1
for num in class_numbers:
model.addGenConstrOr(classes[num], [items[x] for x in map_class_to_name[num]] ,name="class count")
for c in self.raw_constraints:
count = model.addVar()
for n in c:
if n in classes:
count += classes[n]
model.addConstr(count <= 1, name="constraint")
print("Start optimizing...")
model.optimize()
print("Done! ")
# Status checking
status = model.Status
if status == GRB.Status.INF_OR_UNBD or \
status == GRB.Status.INFEASIBLE or \
status == GRB.Status.UNBOUNDED:
print('The model cannot be solved because it is infeasible or unbounded')
if status != GRB.Status.OPTIMAL:
print('Optimization was stopped with status ' + str(status))
Problem = True
try:
model.write("mps_model/" + self.filename + ".sol")
except Exception as e:
pass
print("Generating solution file...")
# Display solution
solution_names = list()
for i, v in enumerate(items):
try:
if items[v].X > 0.9:
solution_names.append(item_names[i])
except Exception as e:
pass
self.M = old_M
self.items = old_items
#.........这里部分代码省略.........
示例5: Backup
# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import write [as 别名]
#.........这里部分代码省略.........
self.__model = Model('Backup')
# Auxiliary variables for SOCP reformulation
U = {}
R = {}
# Create variables
for i,j in self.__links:
self.__BackupCapacity[i,j] = self.__model.addVar(lb=0, obj=1, name='Backup_Capacity[%s,%s]' % (i, j))
self.__model.update()
for i,j in self.__links:
for s,d in self.__links:
self.__bBackupLink[i,j,s,d] = self.__model.addVar(vtype=GRB.BINARY,obj=1,name='Backup_Link[%s,%s,%s,%s]' % (i, j, s, d))
self.__model.update()
for i,j in self.__links:
U[i,j] = self.__model.addVar(obj=1,name='U[%s,%s]' % (i, j))
self.__model.update()
for i,j in self.__links:
for s,d in self.__links:
R[i,j,s,d] = self.__model.addVar(obj=1,name='R[%s,%s,%s,%s]' % (i,j,s,d))
self.__model.update()
self.__model.modelSense = GRB.MINIMIZE
#m.setObjective(quicksum([fixedCosts[p]*open[p] for p in plants]))
self.__model.setObjective(quicksum(self.__BackupCapacity[i,j] for i,j in self.__links))
self.__model.update()
#------------------------------------------------------------------------#
# Constraints definition #
# #
# #
#------------------------------------------------------------------------#
# Link capacity constraints
for i,j in self.__links:
self.__model.addConstr(self.__BackupCapacity[i,j] >= quicksum(self.__mean[s,d]*self.__bBackupLink[i,j,s,d] for (s,d) in self.__links) + U[i,j]*self.__invstd,'[CONST]Link_Cap_%s_%s' % (i, j))
self.__model.update()
# SCOP Reformulation Constraints
for i,j in self.__links:
self.__model.addConstr(quicksum(R[i,j,s,d]*R[i,j,s,d] for (s,d) in self.__links) <= U[i,j]*U[i,j],'[CONST]SCOP1[%s][%s]' % (i, j))
self.__model.update()
# SCOP Reformulation Constraints
for i,j in self.__links:
for s,d in self.__links:
self.__model.addConstr(self.__std[s,d]*self.__bBackupLink[i,j,s,d] == R[i,j,s,d],'[CONST]SCOP2[%s][%s][%s][%s]' % (i, j,s,d))
self.__model.update()
for i in self.__nodes:
for s,d in self.__links:
# Flow conservation constraints
if i == s:
self.__model.addConstr(quicksum(self.__bBackupLink[i,j,s,d] for i,j in self.__links.select(i,'*')) -
quicksum(self.__bBackupLink[j,i,s,d] for j,i in self.__links.select('*',i)) == 1,'Flow1[%s,%s,%s,%s]' % (i,j,s, d))
# Flow conservation constraints
elif i == d:
self.__model.addConstr(quicksum(self.__bBackupLink[i,j,s,d] for i,j in self.__links.select(i,'*')) -
quicksum(self.__bBackupLink[j,i,s,d] for j,i in self.__links.select('*',i)) == -1,'Flow2[%s,%s,%s,%s]' % (i,j,s, d))
# Flow conservation constraints
else:
self.__model.addConstr(quicksum(self.__bBackupLink[i,j,s,d] for i,j in self.__links.select(i,'*')) -
quicksum(self.__bBackupLink[j,i,s,d] for j,i in self.__links.select('*',i)) == 0,'Flow3[%s,%s,%s,%s]' % (i,j,s, d))
self.__model.update()
def optimize(self,MipGap, TimeLimit):
self.__model.write('backup.lp')
if MipGap != None:
self.__model.params.timeLimit = TimeLimit
if TimeLimit != None:
self.__model.params.MIPGap = MipGap
# Compute optimal solution
self.__model.optimize()
# Print solution
if self.__model.status == GRB.Status.OPTIMAL:
solution = self.__model.getAttr('x', self.__BackupCapacity)
for i,j in self.__links:
if solution[i,j] > 0:
print('%s -> %s: %g' % (i, j, solution[i,j]))
else:
print('Optimal value not found!\n')
solution = []
return solution;
def reset(self):
'''
Reset model solution
'''
self.__model.reset()
示例6: GurobiSolver
# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import write [as 别名]
class GurobiSolver(Solver):
""" Implements the solver interface using gurobipy. """
def __init__(self):
Solver.__init__(self)
self.problem = GurobiModel()
def __getstate__(self):
tmp_file = tempfile.mktemp(suffix=".lp")
self.problem.update()
self.problem.write(tmp_file)
cplex_form = open(tmp_file).read()
repr_dict = {'var_ids': self.var_ids, 'constr_ids': self.constr_ids, 'cplex_form': cplex_form}
return repr_dict
def __setstate__(self, repr_dict):
tmp_file = tempfile.mktemp(suffix=".lp")
open(tmp_file, 'w').write(repr_dict['cplex_form'])
self.problem = read(tmp_file)
self.var_ids = repr_dict['var_ids']
self.constr_ids = repr_dict['constr_ids']
def add_variable(self, var_id, lb=None, ub=None, vartype=VarType.CONTINUOUS, persistent=True, update_problem=True):
""" Add a variable to the current problem.
Arguments:
var_id : str -- variable identifier
lb : float -- lower bound
ub : float -- upper bound
vartype : VarType -- variable type (default: CONTINUOUS)
persistent : bool -- if the variable should be reused for multiple calls (default: true)
update_problem : bool -- update problem immediately (default: True)
"""
lb = lb if lb is not None else -GRB.INFINITY
ub = ub if ub is not None else GRB.INFINITY
map_types = {VarType.BINARY: GRB.BINARY,
VarType.INTEGER: GRB.INTEGER,
VarType.CONTINUOUS: GRB.CONTINUOUS}
if var_id in self.var_ids:
var = self.problem.getVarByName(var_id)
var.setAttr('lb', lb)
var.setAttr('ub', ub)
var.setAttr('vtype', map_types[vartype])
else:
self.problem.addVar(name=var_id, lb=lb, ub=ub, vtype=map_types[vartype])
self.var_ids.append(var_id)
if not persistent:
self.temp_vars.add(var_id)
if update_problem:
self.problem.update()
def add_constraint(self, constr_id, lhs, sense='=', rhs=0, persistent=True, update_problem=True):
""" Add a variable to the current problem.
Arguments:
constr_id : str -- constraint identifier
lhs : list [of (str, float)] -- variables and respective coefficients
sense : {'<', '=', '>'} -- default '='
rhs : float -- right-hand side of equation (default: 0)
persistent : bool -- if the variable should be reused for multiple calls (default: True)
update_problem : bool -- update problem immediately (default: True)
"""
grb_sense = {'=': GRB.EQUAL,
'<': GRB.LESS_EQUAL,
'>': GRB.GREATER_EQUAL}
if constr_id in self.constr_ids:
constr = self.problem.getConstrByName(constr_id)
self.problem.remove(constr)
expr = quicksum([coeff * self.problem.getVarByName(r_id) for r_id, coeff in lhs if coeff])
self.problem.addConstr(expr, grb_sense[sense], rhs, constr_id)
self.constr_ids.append(constr_id)
if not persistent:
self.temp_constrs.add(constr_id)
if update_problem:
self.problem.update()
def remove_variable(self, var_id):
""" Remove a variable from the current problem.
Arguments:
var_id : str -- variable identifier
"""
if var_id in self.var_ids:
self.problem.remove(self.problem.getVarByName(var_id))
self.var_ids.remove(var_id)
def remove_constraint(self, constr_id):
""" Remove a constraint from the current problem.
#.........这里部分代码省略.........
示例7: __optmize_single_project
# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import write [as 别名]
#.........这里部分代码省略.........
# y
y = {}
for activity_i in project_activities.nodes():
for activity_j in project_activities.nodes():
# print(project_activities.node[activity_i])
# print(dir(project_activities.node[activity_i]))
if activity_i != activity_j and len(list(
set(project_activities.node[activity_i]['rk_resources']).intersection(
project_activities.node[activity_j]['rk_resources']))) > 0:
y[activity_i, activity_j] = m.addVar(obj=0, vtype=GRB.BINARY,
name="(y%d,%s,%s)" % (j, activity_i, activity_j))
m.update()
#### Create constrains ####
## Constrain 2: project complete data>due data
## move to annealing objective function
## Constrain 3: supplier capacity limit
## move to annealing neighbor & random generator
## Constrain 4,6: project demand require; each project receive from one supplier for each resource
## move to annealing neighbor & random generator
## constrain 5: shipping constrain
## move to annealing neighbor & random generator
## Constrain 7:budget limit
## move to annealing constraint valid
## Constrain 8: activity starting constrain
for a in project_activities.nodes():
for r in project_activities.node[a]['resources']:
resource_delivered_days = 0
for s in self.resource_supplier_list[r]:
resource_delivered_days += x.get((r, s, project), 0) * \
(self.resource_supplier_release_time[r, s] +
self.supplier_project_shipping[
r, s, project])
m.addConstr(resource_delivered_days, GRB.LESS_EQUAL, ST[a],
name="constraint_8_project_%d_activity_%s_resource_%s" % (j, a, r))
## Constrain 9 activity sequence constrain
for row1, row2 in project_activities.edges():
# print(row1, '#', row2, '#', j)
# print(ST)
m.addConstr(ST[row1] + project_activities.node[row1]['duration'], GRB.LESS_EQUAL,
ST[row2], name="constraint_9_project_%d_activity_%s_activity_%s" % (j, row1, row2))
## Constrain 10,11
for row1 in project_activities.nodes():
for row2 in project_activities.nodes():
if row1 != row2 and len(list(
set(project_activities.node[row1]['rk_resources']).intersection(
project_activities.node[row2]['rk_resources']))) > 0:
m.addConstr(ST[row1] + project_activities.node[row1]['duration'] - self.M * (
1 - y[row1, row2]), GRB.LESS_EQUAL, ST[row2],
name="constraint_10_project_%d_activity_%s_activity_%s" % (j, row1, row2))
m.addConstr(
ST[row2] + project_activities.node[row2]['duration'] - self.M * (y[row1, row2]),
GRB.LESS_EQUAL, ST[row1],
name="constraint_11_project_%d_activity_%s_activity_%s" % (j, row1, row2))
# m.addConstr(y[j,row1,row2]+y[j,row2,row1],GRB.LESS_EQUAL,1)
## Constrain 12
for row in project_activities.nodes():
# print(project_activities.node[row]['duration'])
m.addConstr(CT, GRB.GREATER_EQUAL, ST[row] + project_activities.node[row]['duration'],
name="constraint_12_project_%d_activity_%s" % (j, row))
## Constrain 13
## move to anealing objective function
## Constrain 14
## move to anealing objective function
## Constrain 15
## move to anealing objective function
## Constrain 16
## move to anealing objective function
## Constrain 17
## move to anealing objective function
m.update()
# Set optimization objective - minimize completion time
expr = LinExpr()
expr.add(CT)
m.setObjective(expr, GRB.MINIMIZE)
m.update()
##########################################
m.params.presolve = 1
m.update()
# Solve
# m.params.presolve=0
m.optimize()
m.write(join(self.output_dir, "heuristic_%d.lp" % j))
m.write(join(self.output_dir, "heuristic_%d.sol" % j))
return m.objVal
示例8: __objective_function
# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import write [as 别名]
def __objective_function(self, x, q):
m = Model("Overall_Model")
CT = {}
DT = {}
TD = {}
#### Add Variable ####
for j in range(self.project_n):
## solve individual model get Project complete date
CT[j] = self.__optmize_single_project(x, j)
## Project Tadeness,construction completion time
DT[j] = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="(DT%d)" % j)
TD[j] = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="(TD%d)" % j)
DT[-1] = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="(DT-1)")
## Review Sequence z_ij
z = {}
for i in range(self.project_n):
for j in range(self.project_n):
if i != j:
z[i, j] = m.addVar(obj=0, vtype=GRB.BINARY, name="(z%d,%d)" % (i, j))
for j in range(self.project_n):
z[-1, j] = m.addVar(obj=0, vtype=GRB.BINARY, name="(z%d,%d)" % (-1, j))
m.update();
#### Add Constraint ####
## Constrain 2: project complete data>due data ##
for j in range(self.project_n):
m.addConstr(DT[j] - TD[j], GRB.LESS_EQUAL, self.DD[j], name="constraint_2_project_%d" % j)
## Constraint 13
for j in range(self.project_n):
m.addConstr(DT[j], GRB.GREATER_EQUAL, CT[j] + self.review_duration[j], name="constraint_13_project_%d" % j)
## Constraint 14
for i in range(-1, self.project_n):
for j in range(self.project_n):
if i != j:
m.addConstr(DT[j], GRB.GREATER_EQUAL, DT[i] - self.M * (1 - z[i, j]) + self.review_duration[j],
name="constraint_14_project_%d_project_%d" % (i, j))
## Constrain 15
for j in range(self.project_n):
m.addConstr(quicksum(z[i, j] for i in range(-1, self.project_n) if i != j), GRB.EQUAL, 1,
name="constraint_15_project_%d" % j)
## Constrain 16
m.addConstr(quicksum(z[-1, j] for j in range(self.project_n)), GRB.EQUAL, 1, name="constraint_16")
## Constrain 17
for i in range(self.project_n):
m.addConstr(quicksum(z[i, j] for j in range(self.project_n) if j != i), GRB.LESS_EQUAL, 1,
name="constraint_17_project_%d" % i)
m.update()
# Set optimization objective - minimize sum of
expr = LinExpr()
for j in range(self.project_n):
expr.add(self.w[j] * TD[j])
m.setObjective(expr, GRB.MINIMIZE)
m.update()
m.params.presolve = 1
m.update()
m.optimize()
m.write(join(self.output_dir, "heuristic_whole.lp"))
m.write(join(self.output_dir, "heuristic_whole.sol"))
print([self.w[j] * TD[j].X for j in range(self.project_n)])
return m.objVal, argmax([self.w[j] * TD[j].X for j in range(self.project_n)])
示例9: __objective_function
# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import write [as 别名]
def __objective_function(self, x, q, p_changed=None):
m = Model("Overall_Model")
if p_changed is not None:
j0 = self.project_list.index(p_changed)
CT = self.last_CT
CT[j0] = self.optmize_single_project(x, j0, self.project_list, self.project_activity,
self.resource_supplier_list,
self.resource_supplier_release_time, self.supplier_project_shipping,
self.M,
self.output_dir)
else:
CT = {}
CT_ASYNC = dict()
for j in range(self.project_n):
## solve individual model get Project complete date
CT_ASYNC[j] = self.pool.apply_async(HeuristicParallelModel.optmize_single_project,
(x, j, self.project_list, self.project_activity,
self.resource_supplier_list,
self.resource_supplier_release_time,
self.supplier_project_shipping,
self.M,
self.output_dir))
for j in range(self.project_n):
CT[j] = CT_ASYNC[j].get()
self.last_CT = deepcopy(CT)
DT = {}
TD = {}
for j in range(self.project_n):
## Project Tadeness,construction completion time
DT[j] = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="(DT%d)" % j)
TD[j] = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="(TD%d)" % j)
DT[-1] = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="(DT-1)")
## Review Sequence z_ij
z = {}
for i in range(self.project_n):
for j in range(self.project_n):
if i != j:
z[i, j] = m.addVar(obj=0, vtype=GRB.BINARY, name="(z%d,%d)" % (i, j))
for j in range(self.project_n):
z[-1, j] = m.addVar(obj=0, vtype=GRB.BINARY, name="(z%d,%d)" % (-1, j))
m.update();
#### Add Constraint ####
## Constrain 2: project complete data>due data ##
for j in range(self.project_n):
m.addConstr(DT[j] - TD[j], GRB.LESS_EQUAL, self.DD[j], name="constraint_2_project_%d" % j)
## Constraint 13
for j in range(self.project_n):
m.addConstr(DT[j], GRB.GREATER_EQUAL, CT[j] + self.review_duration[j], name="constraint_13_project_%d" % j)
## Constraint 14
for i in range(-1, self.project_n):
for j in range(self.project_n):
if i != j:
m.addConstr(DT[j], GRB.GREATER_EQUAL, DT[i] - self.M * (1 - z[i, j]) + self.review_duration[j],
name="constraint_14_project_%d_project_%d" % (i, j))
## Constrain 15
for j in range(self.project_n):
m.addConstr(quicksum(z[i, j] for i in range(-1, self.project_n) if i != j), GRB.EQUAL, 1,
name="constraint_15_project_%d" % j)
## Constrain 16
m.addConstr(quicksum(z[-1, j] for j in range(self.project_n)), GRB.EQUAL, 1, name="constraint_16")
## Constrain 17
for i in range(self.project_n):
m.addConstr(quicksum(z[i, j] for j in range(self.project_n) if j != i), GRB.LESS_EQUAL, 1,
name="constraint_17_project_%d" % i)
m.update()
# Set optimization objective - minimize sum of
expr = LinExpr()
for j in range(self.project_n):
expr.add(self.w[j] * TD[j])
m.setObjective(expr, GRB.MINIMIZE)
m.update()
m.params.presolve = 1
m.update()
m.optimize()
m.write(join(self.output_dir, "heuristic_whole.lp"))
m.write(join(self.output_dir, "heuristic_whole.sol"))
self.obj_value_trace.append(m.objVal)
return m.objVal, argmax([self.w[j] * TD[j].X for j in range(self.project_n)])
示例10: SQModel
# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import write [as 别名]
class SQModel(object):
'''
classdocs
'''
# Private model object
__model = []
# Private model variables
__z0 = {}
__z = {}
__q = {}
# Private model parameters
__BackupCapacity = {}
__bBackupLink = {}
__links = []
__nodes = []
__capacity = []
__epsilon = 1
__impSample = {}
__N = 1
def __init__(self,imp_samp,nodes,links,capacity,epsilon,N,backup_link,link_capacity):
'''
Constructor
'''
self.__links = links
self.__nodes = nodes
self.__capacity = capacity
self.__epsilon = epsilon
self.__N = N
self.__loadModel(imp_samp,backup_link,link_capacity)
def __loadModel(self,imp_samp, backup_link,link_capacity):
# Create optimization model
self.__model = Model('Backup')
for i,j in self.__links:
for k in range(self.__N):
self.__z[k,i,j] = self.__model.addVar(lb=0,name='z[%s][%s][%s]' % (k,i,j))
self.__model.update()
for i,j in self.__links:
self.__z0[i,j] = self.__model.addVar(lb=-GRB.INFINITY,name='z0[%s][%s]' %(i,j))
self.__model.update()
for i,j in self.__links:
self.__q[i,j] = self.__model.addVar(lb=-GRB.INFINITY,name='q[%s][%s]' %(i,j))
self.__model.update()
self.__model.modelSense = GRB.MINIMIZE
self.__model.setObjective(quicksum(self.__q[i,j] for i,j in self.__links))
self.__model.update()
#------------------------------------------------------------------------#
# Constraints definition #
# #
# #
#------------------------------------------------------------------------#
# Buffer probability I
for i,j in self.__links:
self.__model.addConstr(self.__z0[i,j] + 1/(self.__N*self.__epsilon)*quicksum(self.__z[k,i,j]*imp_samp[k] for (k) in range(self.__N)) <= self.__q[i,j],'[CONST]Buffer_Prob_I[%s][%s]'%(i,j))
self.__model.update()
# Link capacity constraints
for i,j in self.__links:
for k in range(self.__N):
self.__model.addConstr((quicksum(backup_link[i,j,s,d]*self.__capacity[k,s,d] for s,d in self.__links) - link_capacity[i,j] - self.__z0[i,j]) <= self.__z[k,i,j],'[CONST]Buffer_Prob_II[%s][%s][%s]' % (k,i,j))
self.__model.update()
# Link capacity constraints
for i,j in self.__links:
for k in range(self.__N):
self.__model.addConstr(self.__z[k,i,j] >= 0,'[CONST]Buffer_Prob_III[%s][%s][%s]' % (k,i,j))
self.__model.update()
def optimize(self,MipGap, TimeLimit, LogLevel = None):
self.__model.write('quantile.lp')
if MipGap != None:
self.__model.params.MIPGap = MipGap
if TimeLimit != None:
self.__model.params.timeLimit = TimeLimit
# Compute optimal solution
self.__model.optimize()
# Print solution
if self.__model.status == GRB.Status.OPTIMAL:
#SuperQuantileSolution = self.__model.getAttr('x', self.__z0)
SuperQuantileSolution = {}
OptimalZnot = {}
for i,j in self.__links:
name='q[%s][%s]'%(i,j)
v = self.__model.getVarByName(name)
#.........这里部分代码省略.........
示例11: createModel
# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import write [as 别名]
def createModel(self):
w = {}
self.y = {}
m = Model("Optimization Model")
#part of 6a -- create w variables
for n in range(1,self.nScenario+1):
for k in range(1,self.numberOfFinancialAsstValues+1): #I'm not sure how the "paramDF" file will be structured--this is temporary
for j in range(1,self.nOwners+1):
w[j, k, n] = m.addVar(vtype=GRB.CONTINUOUS, name="w_"+str(j)+"_"+str(k)+"_"+str(n))
#Constraint 6f
for k in range(1,self.numberOfFinancialAsstValues+1):
for j in range(1,self.nOwners+1):
self.y[j, k] = m.addVar(vtype=GRB.BINARY, name="y_"+str(j)+"_"+str(k))
m.update()
#6a continued
#for k in range(1,self.numberOfFinancialAsstValues+1):
#6a updated
for n in range(1,self.nScenario+1):
m.addConstr(quicksum(w[1,k,n] for k in range(1,self.numberOfFinancialAsstValues+1)) == self.SecondStgValues[n-1]*quicksum(self.DecisionProb[n,1,k]*self.y[1, k] for k in range(1,self.numberOfFinancialAsstValues+1)), name = "6a_1_"+str(n))
# w[1,k,n] = self.SecondStgValues[n-1]
#6b updated
for r in range(2,self.nOwners+1):
for n in range(1,self.nScenario+1):
#if self.ProbDict["("+str(n)+", 1, 0, "+str(k)+")"] > 0:
# for self.ProbDict["("+str(n)+", 1, 0, "+str(k)+")"] > 0:
m.addConstr(quicksum(w[r-1,k,n] for k in range(1,self.numberOfFinancialAsstValues+1)) == quicksum(w[r,k,n]*(1/self.DecisionProb[n,r,k]) for k in range(1,self.numberOfFinancialAsstValues+1)), name = "6b_"+str(r)+"_"+str(n))
#if self.ProbDict["("+str(n)+", 1, 1, "+str(k)+")"] > 0:
# m.addConstr(quicksum(w[r-1,k,n] for k in range(1,self.numberOfFinancialAsstValues+1)) == quicksum(w[r,k,n]*(1/self.ProbDict["("+str(n)+", 1, 1, "+str(k)+")"]) for k in range(1,self.numberOfFinancialAsstValues+1)), name = "6b_"+str(r)+"_"+str(n))
#6b
#for r in range(2, self.nOwners+1):
# for n in range(1,self.nScenario+1):
# m.addConstr(quicksum(quicksum(self.ProbDict["("+str(n)+", "+str(r-1)+", "+str(l)+", "+str(k)+")"]*w[r-1,k,n] for l in (0,1))
# for k in range(1,self.numberOfFinancialAsstValues+1)) == quicksum(w[r, k, n] for k in range(1,self.numberOfFinancialAsstValues+1)), name = "6b_"+str(r)+"_"+str(n))
#for n in range(1,self.nScenario+1):
# m.addConstr(quicksum(w[r, k, n] for k in range(1,self.numberOfFinancialAsstValues+1)), name = "6b_"+str(r)+"_"+str(n))
#for k in range(1,self.numberOfFinancialAsstValues+1):
# for r in range(2, self.ownerNums+2):
# for n in range(1,self.nScenario+1):
# for l in (0,1):
# m.addConstr(quicksum(quicksum(self.ProbDict["("+str(n)+", "+str(r-1)+", "+str(l)+", "+str(k)+")"]*w[r-1,k,n]) == quicksum(w[r, k, n]),
# name = "6b_"+str(r)+"_"+str(k)+"_"+str(n)))
#6c
#Not sure if this is the proper formatting for this constraint
#Is this the proper use of self.SecondStgValues?
#for n in range(1,self.nScenario +1):
# for k in range(1,self.numberOfFinancialAsstValues+1): #I'm not sure how the "paramDF" file will be structured--this is temporary
# for r in range(1,self.ownerNums+2):
#6c updated
for k in range(1,self.numberOfFinancialAsstValues+1):
for r in range(1, self.nOwners+1):
for n in range(1,self.nScenario+1):
m.addConstr(w[r, k, n] <= self.y[r, k]*self.SecondStgValues[n-1], name = "6c_"+str(r)+"_"+str(k)+"_"+str(n))
#print str(r)+"_"+str(k)+"_"+str(n)
#for r in range(1, self.ownerNums+2) for k in range(1,self.numberOfFinancialAsstValues+1) for n in range(1,self.nScenario+1))
#Constraint 6d
#the sum of the financial assistance offered to all landowners is less than or equal to the agency's budget
#Where does C come from?
m.addConstr(quicksum(quicksum(self.C_k[k-1]*self.y[j, k] for k in range(1,self.numberOfFinancialAsstValues+1))for j in range(1,self.nOwners+1)) <= self.Budget_param, name = "6d")
#Constraint 6e
for j in range(1,self.nOwners+1):
m.addConstr(quicksum(self.y[j, k] for k in range(1,self.numberOfFinancialAsstValues+1)) == 1, name = "6e_"+str(j))
m.update()
#set objective
lastLandownerIndex = self.nOwners
m.setObjective(quicksum(quicksum(w[lastLandownerIndex, k, n] for k in range(1,self.numberOfFinancialAsstValues+1)) for n in range(1,self.nScenario+1)), GRB.MINIMIZE)
m.update()
m.optimize()
if m.status == GRB.Status.OPTIMAL:
print ('\nOBJECTIVE VALUE: %g' % m.objVal)
for v in m.getVars():
print('%s %g' % (v.varName, v.x))
m.write('toy results.lp')
return m
示例12: _objective_function_for_tardiness
# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import write [as 别名]
def _objective_function_for_tardiness(x, AT, D):
global _last_CT, _last_x, _pool, _time_limit_per_model
m = Model("Overall_Model")
m.params.timelimit = _time_limit_per_model
# m.setParam('OutputFlag', False)
# m.params.IntFeasTol = 1e-7
CT = {}
# CT_ASYNC = dict()
# project_to_recompute, project_no_recompute = get_project_to_recompute(x, D.project_n, D.project_list)
project_suppliers = _get_project_suppliers_map(x, D.project_list)
critical_project_resource = dict()
# for j in range(D.project_n):
# p = D.project_list[j]
# CT_ASYNC[j] = _pool.apply_async(optimize_single_project,
# (AT, j, D.project_list, D.project_activity, D.M))
#
# for j in CT_ASYNC:
# p = D.project_list[j]
# CT[j], skj = CT_ASYNC[j].get()
# _put_CT(p, project_suppliers[p], CT[j])
# _put_historical_delta_weight_idx_map(p, project_suppliers[p], skj)
# critical_project_resource.update(skj)
for j in range(D.project_n):
p = D.project_list[j]
CT[j], skj = optimize_single_project(AT, j, D.project_list, D.project_activity, D.M)
_put_CT(p, project_suppliers[p], CT[j])
_put_historical_delta_weight_idx_map(p, project_suppliers[p], skj)
critical_project_resource.update(skj)
DT = {}
TD = {}
for j in range(D.project_n):
## Project Tadeness,construction completion time
DT[j] = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="DT_%d" % j)
TD[j] = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="TD_%d" % j)
DT[-1] = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="DT_-1")
## Review Sequence z_ij
z = {}
for i in range(D.project_n):
for j in range(D.project_n):
if i != j:
z[i, j] = m.addVar(obj=0, vtype=GRB.BINARY, name="z_%d_%d" % (i, j))
for j in range(D.project_n):
z[-1, j] = m.addVar(obj=0, vtype=GRB.BINARY, name="z_%d_%d" % (-1, j))
m.update();
#### Add Constraint ####
## Constrain 2: project complete data>due data ##
# equation 17
for j in range(D.project_n):
m.addConstr(DT[j] - TD[j], GRB.LESS_EQUAL, D.DD[j], name="constraint_2_project_%d" % j)
## Constraint 13
# equation 12
for j in range(D.project_n):
m.addConstr(DT[j], GRB.GREATER_EQUAL, CT[j] + D.review_duration[j],
name="constraint_13_project_%d" % j)
## Constraint 14
# equation 13
for i in range(-1, D.project_n):
for j in range(D.project_n):
if i != j:
m.addConstr(DT[j], GRB.GREATER_EQUAL, DT[i] - D.M * (1 - z[i, j]) + D.review_duration[j],
name="constraint_14_project_%d_project_%d" % (i, j))
## Constrain 15
# equation 14
for j in range(D.project_n):
m.addConstr(quicksum(z[i, j] for i in range(-1, D.project_n) if i != j), GRB.EQUAL, 1,
name="constraint_15_project_%d" % j)
## Constrain 16
# equation 15
m.addConstr(quicksum(z[-1, j] for j in range(D.project_n)), GRB.EQUAL, 1, name="constraint_16")
## Constrain 17
# equation 16
for i in range(D.project_n):
m.addConstr(quicksum(z[i, j] for j in range(D.project_n) if j != i), GRB.LESS_EQUAL, 1,
name="constraint_17_project_%d" % i)
m.update()
# Set optimization objective - minimize sum of
expr = LinExpr()
for j in range(D.project_n):
expr.add(D.w[j] * TD[j])
m.setObjective(expr, GRB.MINIMIZE)
m.update()
# m.params.presolve = 1
m.update()
m.optimize()
m.write(join(_result_output_path, 'round_%d_tardiness.sol' % _round))
#.........这里部分代码省略.........
示例13: optimize_single_project
# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import write [as 别名]
def optimize_single_project(AT, j, project_list, project_activity, M):
global _time_limit_per_model
m = Model("SingleProject_%d" % j)
m.params.timelimit = _time_limit_per_model
# m.setParam('OutputFlag', False)
# m.params.IntFeasTol = 1e-7
#### Create variables ####
project = project_list[j]
## Project complete data,Project Tadeness,construction completion time
CT = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="CT_%d" % j)
## Activity start time
ST = {}
project_activities = project_activity[project]
for row in project_activities.nodes():
ST[row] = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="ST_%d_%s" % (j, row))
## Review sequence z_ij
## move to annealing objective function
# y
y = {}
for activity_i in project_activities.nodes():
for activity_j in project_activities.nodes():
if activity_i != activity_j and len(list(
set(project_activities.node[activity_i]['rk_resources']).intersection(
project_activities.node[activity_j]['rk_resources']))) > 0:
y[activity_i, activity_j] = m.addVar(obj=0, vtype=GRB.BINARY,
name="y_%d_%s_%s" % (j, activity_i, activity_j))
m.update()
## Constrain 8: activity starting constrain
# equation 20
for a in project_activities.nodes():
for r in project_activities.node[a]['resources']:
m.addConstr(AT[j, r], GRB.LESS_EQUAL, ST[a],
name="constraint_8_project_%d_activity_%s_resource_%s" % (j, a, r))
## Constrain 9 activity sequence constrain
# equation 21
for row1, row2 in project_activities.edges():
m.addConstr(ST[row1] + project_activities.node[row1]['duration'], GRB.LESS_EQUAL,
ST[row2], name="constraint_9_project_%d_activity_%s_activity_%s" % (j, row1, row2))
## Constrain 10,11
for row1 in project_activities.nodes():
for row2 in project_activities.nodes():
if row1 != row2 and len(list(
set(project_activities.node[row1]['rk_resources']).intersection(
project_activities.node[row2]['rk_resources']))) > 0:
# equation 22
m.addConstr(ST[row1] + project_activities.node[row1]['duration'] - M * (
1 - y[row1, row2]), GRB.LESS_EQUAL, ST[row2],
name="constraint_10_project_%d_activity_%s_activity_%s" % (j, row1, row2))
# equation 23
m.addConstr(
ST[row2] + project_activities.node[row2]['duration'] - M * (y[row1, row2]),
GRB.LESS_EQUAL, ST[row1],
name="constraint_11_project_%d_activity_%s_activity_%s" % (j, row1, row2))
# m.addConstr(y[j,row1,row2]+y[j,row2,row1],GRB.LESS_EQUAL,1)
## Constrain 12
# equation 24
for row in project_activities.nodes():
m.addConstr(CT, GRB.GREATER_EQUAL, ST[row] + project_activities.node[row]['duration'],
name="constraint_12_project_%d_activity_%s" % (j, row))
m.update()
# Set optimization objective - minimize completion time
expr = LinExpr()
expr.add(CT)
m.setObjective(expr, GRB.MINIMIZE)
m.update()
##########################################
# m.params.presolve = 1
m.update()
# Solve
# m.params.presolve=0
m.optimize()
m.write(join(_result_output_path, "round_%d_optimize_single_project_%d.lp" % (_round, j)))
m.write(join(_result_output_path, "round_%d_optimize_single_project_%d.sol" % (_round, j)))
# _logger.info("project %d with optimalVal %r" % (j, m.objVal))
# m.fixedModel()
skj = _sensitivity_for_constraints(AT, j, project, y, project_activity, M)
# for c in m.getConstrs():
# if c.ConstrName.startswith('constraint_8_project'):
# splits = c.ConstrName.split('_')
# if c.Pi == 0:
# _logger.info('project %d bind resource:%s Slack:%.4g'%(j, splits[-1],c.Pi))
# break
# else:
# _logger.info('project %d not bind'%j)
_single_project_objective_dataset.loc[_single_project_objective_dataset.shape[0]] = [_round, j, m.objVal]
return m.objVal, skj
示例14: _objective_function_for_delta_weight
# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import write [as 别名]
def _objective_function_for_delta_weight(D, delta_weight, d1, d2):
global _time_limit_per_model, _round, _pr_dataset, _tardiness_objective_dataset
m = Model("model_for_supplier_assignment")
m.setParam('OutputFlag', False)
m.params.timelimit = _time_limit_per_model
# m.params.IntFeasTol = 1e-7
x = {}
q = {}
for (r, s, p) in D.supplier_project_shipping:
x[r, s, p] = m.addVar(vtype=GRB.BINARY, name="x_%s_%s_%s" % (r, s, p))
q[r, s, p] = m.addVar(vtype=GRB.CONTINUOUS, name="q_%s_%s_%s" % (r, s, p))
AT = {}
for j in range(D.project_n):
for k in [r for r, p in D.resource_project_demand if p == D.project_list[j]]:
AT[j, k] = m.addVar(vtype=GRB.CONTINUOUS, name="AT_%s_%s" % (j, k))
m.update()
## define constraints
# equation 2
for (r, s) in D.resource_supplier_capacity:
m.addConstr(quicksum(q[r, s, D.project_list[j]] for j in range(D.project_n)), GRB.LESS_EQUAL,
D.resource_supplier_capacity[r, s],
name="constraint_3_resource_%s_supplier_%s" % (r, s))
# constraint 21(4) 23(6)
for (r, p) in D.resource_project_demand:
# equation 5
m.addConstr(quicksum(x[r, i, p] for i in D.resource_supplier_list[r]), GRB.EQUAL, 1,
name="constraint_6_resource_%s_project_%s" % (r, p))
# equation 3
m.addConstr(quicksum(q[r, i, p] for i in D.resource_supplier_list[r]), GRB.GREATER_EQUAL,
D.resource_project_demand[r, p], name="constraint_4_resource_%s_project_%s" % (r, p))
# constraint 22(5)
for (i, j, k) in q:
# i resource, j supplier, k project
# equation 4
m.addConstr(q[i, j, k], GRB.LESS_EQUAL, D.M * x[i, j, k],
name="constraint_5_resource_%s_supplier_%s_project_%s" % (i, j, k))
# constraint 7
shipping_cost_expr = LinExpr()
for (i, j, k) in q:
shipping_cost_expr.addTerms(D.c[i, j, k], q[i, j, k])
# equation 6
m.addConstr(shipping_cost_expr, GRB.LESS_EQUAL, D.B, name="constraint_7")
# constraint 8
# equation 26
for j in range(D.project_n):
p = D.project_list[j]
project_resources = [r for (r, p_) in D.resource_project_demand.keys() if p_ == p]
for r in project_resources:
suppliers = D.resource_supplier_list[r]
m.addConstr(
quicksum(
x[r, s, p] * (D.resource_supplier_release_time[r, s] + D.supplier_project_shipping[r, s, p]) for
s in
suppliers), GRB.LESS_EQUAL, AT[j, r],
name="constraint_8_project_%d_resource_%s_deliver" % (j, r))
m.update()
expr = LinExpr()
for j in range(D.project_n):
p = D.project_list[j]
for r in [r for (r, p_) in D.resource_project_demand.keys() if p_ == p]:
expr.add(delta_weight[j, r] * AT[j, r])
m.setObjective(expr, GRB.MINIMIZE)
m.update()
##########################################
# m.params.presolve = 1
m.update()
# Solve
# m.params.presolve=0
m.optimize()
_exit_if_infeasible(m)
m.write(join(_result_output_path, "round_%d_supplier_assign.lp" % _round))
m.write(join(_result_output_path, "round_%d_supplier_assign.sol" % _round))
with open(join(log_output_path, 'shipping_cost.txt'), 'a') as fout:
fout.write('shipping cost: %f\n' % shipping_cost_expr.getValue())
_logger.info('shipping cost: %f' % shipping_cost_expr.getValue())
print('status', m.status)
# m.write(join(_output_path, 'delta_weight.sol'))
# m.write(join(_output_path, 'delta_weight.lp'))
X_ = {}
for (i, j, k) in D.supplier_project_shipping:
v = m.getVarByName("x_%s_%s_%s" % (i, j, k))
if v.X == 1:
X_[i, j, k] = 1
AT_ = {}
for j, r in AT:
val = AT[j, r].X
if val > 0:
AT_[j, r] = val
tardiness_obj_val, skj, sj = _objective_function_for_tardiness(X_, AT_, D)
new_delta_weight = {}
# delta_weight_keys = list(delta_weight.keys())
#.........这里部分代码省略.........
示例15: __init__
# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import write [as 别名]
class HarmonyModel:
def __init__(self, length):
"""Initialize model, note and chord variables, and constraints for notes
and chord constraints."""
self.model = Model("harmony")
self.length = length
config = load_source("config",
join(abspath(dirname(__file__)), "config.py"))
config.length = self.length
config.model = self.model
self.notes = Notes(config)
config.notes = self.notes
self.chords = Chords(config)
def ensure_melody(self, melody):
"""Ensure that the four-part harmony has a complete or partial melody as
its soprano line."""
for t, note in enumerate(melody):
if not note:
continue
constraint = self.notes[denote(note), 3, t] == 1
self.model.addConstr(constraint,
"melody_t" + str(t))
self.model.update()
def ensure_harmony(self, harmony):
"""Ensure that the four-part harmony uses certain chords (and the
correct inversion) at each time step."""
for t, chord in enumerate(harmony):
if not chord:
continue
for c in self.chords.chord_notes.keys():
if c == chord:
continue
for d in self.chords.chord_doublings[c]:
constraint = self.chords[c, d, t] == 0
self.model.addConstr(constraint,
"harmony_c" + c + "_d" + str(d) + "_t" + str(t))
self.model.update()
def write(self):
"""Write out LP file of generated model (for debugging)."""
self.model.write("model.lp")
def solve(self):
"""Solve the model and provide the solution's notes (x variables) and
chords (y variables)."""
self.model.optimize()
self.solution = []
try:
for var in self.model.getVars():
if var.x == 1 and var.varName[0] in {"x", "y"}:
self.solution.append(var.varName)
return self.solution
except:
return []
def lilypond_export(self):
"""Return a Lilypond file to generate a human-readable score based on
the IP solution."""
#.........这里部分代码省略.........