当前位置: 首页>>代码示例>>Python>>正文


Python Model.optimize方法代码示例

本文整理汇总了Python中gurobipy.Model.optimize方法的典型用法代码示例。如果您正苦于以下问题:Python Model.optimize方法的具体用法?Python Model.optimize怎么用?Python Model.optimize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在gurobipy.Model的用法示例。


在下文中一共展示了Model.optimize方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: solve_lp_knapsack_gurobi

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import optimize [as 别名]
def solve_lp_knapsack_gurobi(scores, costs, budget):
    from gurobipy import Model, LinExpr, GRB

    n = len(scores)

    # Create a new model.
    m = Model("lp_knapsack")

    # Create variables.
    for i in range(n):
        m.addVar(lb=0.0, ub=1.0)
    m.update()
    vars = m.getVars()

    # Set objective.
    obj = LinExpr()
    for i in range(n):
        obj += scores[i] * vars[i]
    m.setObjective(obj, GRB.MAXIMIZE)

    # Add constraint.
    expr = LinExpr()
    for i in range(n):
        expr += costs[i] * vars[i]
    m.addConstr(expr, GRB.LESS_EQUAL, budget)

    # Optimize.
    m.optimize()
    assert m.status == GRB.OPTIMAL
    x = np.zeros(n)
    for i in range(n):
        x[i] = vars[i].x

    return x
开发者ID:DerThorsten,项目名称:AD3,代码行数:36,代码来源:example_knapsack.py

示例2: ilp

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import optimize [as 别名]
def ilp(costMatrix):

    #Invalid_Connections : -1
    if costMatrix.shape==(0,0):
        return []


    dist_mat=numpy.copy(costMatrix)
    dist_mat[costMatrix==-1]=10e10

    size_x   = dist_mat.shape[0]
    size_y   = dist_mat.shape[1]
    size_min = int(numpy.amin([size_x,size_y]))
    from gurobipy import Model, quicksum, GRB


    m=Model("mip1")
    COS,VAR={},{}

    for i in range(size_x):
        x_cos, x_var = [],[]
        for j in range(size_y):
            COS[i,j]=dist_mat[i,j]
            VAR[i,j]=m.addVar(vtype='B',name="["+str(i)+","+str(j)+"]")
    m.update()


    # Set objective
    m.setObjective( quicksum(\
            COS[x,y]*VAR[x,y]
            for x in range(size_x) \
            for y in range(size_y) \
            ),GRB.MINIMIZE)


    # Constrains HORIZONTAL
    for i in range(size_x):
        m.addConstr( quicksum\
                (VAR[i,y] for y in range(size_y)) <= 1)

    # Constrains VERTICAL
    for i in range(size_y):
        m.addConstr( quicksum\
                (VAR[x,i] for x in range(size_x)) <= 1)

    m.addConstr(quicksum(\
            VAR[x,y] for x in range(size_x) for y in range(size_y)) == int(size_min))

    m.setParam("OutputFlag",False)
    m.optimize()
    res=numpy.zeros(dist_mat.shape,dtype=bool)
    for i in range(size_x):
        for j in range(size_y):
            res[i,j]=VAR[i,j].x

    binMatrix = numpy.zeros( costMatrix.shape,dtype=bool )
    binMatrix[res==1]=1
    binMatrix[costMatrix==-1]=0
    return binMatrix
开发者ID:BioinformaticsArchive,项目名称:ATMA,代码行数:61,代码来源:AssignmentSolver.py

示例3: check_feasability_ILP

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import optimize [as 别名]
def check_feasability_ILP(exams_to_schedule, period, data, verbose=False):
    # More precise but by far to slow compared to heuristic
    r = data['r']
    T = data['T']
    s = data['s']
    z = {}

    model = Model("RoomFeasability")

    # z[i,k] = if exam i is written in room k
    for k in range(r):
        # print k, period
        if T[k][period] == 1:
            for i in exams_to_schedule:
                z[i, k] = model.addVar(vtype=GRB.BINARY, name="z_%s_%s" % (i, k))

    model.update()

    # Building constraints...

    # c1: seats for all students
    for i in exams_to_schedule:
        expr = LinExpr()
        for k in range(r):
            if T[k][period] == 1:
                expr.addTerms(1, z[i, k])
        model.addConstr(expr >= s[i], "c1")

    # c2: only one exam per room
    for k in range(r):
        if T[k][period] == 1:
            expr = LinExpr()
            for i in exams_to_schedule:
                expr.addTerms(1, z[i, k])
            model.addConstr(expr <= 1, "c2")

    model.setObjective(0, GRB.MINIMIZE)
    if not verbose:
        model.params.OutputFlag = 0

    model.params.heuristics = 0
    model.params.PrePasses = 1

    model.optimize()

    # return best room schedule
    try:
        return model.objval
    except GurobiError:
        logging.warning('check_feasability_ILP: model has no objVal')
        return None
开发者ID:CSExam,项目名称:examination-scheduling,代码行数:53,代码来源:constraints_handler.py

示例4: find_feasible_start

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import optimize [as 别名]
def find_feasible_start(n_colors, h, statespace, conflicts, verbose=False):
    
    model = Model("TimeFeasibility")
    p = len(h)
    y = {}
    # y[i,k] = if color i gets slot l
    for i in range(n_colors):
        for l in range(p):
            y[i,l] = model.addVar(vtype=GRB.BINARY, name="y_%s_%s" % (i,l))

    model.update()

    # Building constraints...    
    
    # c1: all get one
    for i in range(n_colors):
        model.addConstr( quicksum([ y[i, l] for l in range(p) ]) == 1, "c1")

    # c2: each slot needs to be used tops once
    for l in range(p):
        model.addConstr( quicksum([ y[i, l] for i in range(n_colors) ]) <= 1, "c2")    

    ### c3: statespace constraints
    for i in range(n_colors):
        #print l, h[l], i, [s for s in statespace]
        model.addConstr( quicksum([ y[i, l] for l in range(p) if h[l] not in statespace[i] ]) == 0, "c3")    
    
    # objective: minimize conflicts
    #obj = quicksum([ y[i,l] * y[j,l] for l in range(p) for i in range(n_colors) for j in range(i+1, n_colors) ]) 
    obj = quicksum([ sum(y[i,l] for i in range(n_colors)) for l in range(p)  ]) 
    #obj = 0
    model.setObjective(obj, GRB.MINIMIZE)
    
    if not verbose:
        model.params.OutputFlag = 0
    
    model.optimize()

    # return best room schedule
    color_schedule = []
    if model.status == GRB.INFEASIBLE:
        return color_schedule
                    
    for i in range(n_colors):
        for l in range(p):
            v = model.getVarByName("y_%s_%s" % (i,l)) 
            if v.x == 1:
                color_schedule.append(h[l])
                break
            
    return color_schedule
开发者ID:CSExam,项目名称:examination-scheduling,代码行数:53,代码来源:schedule_times.py

示例5: generateInstance

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import optimize [as 别名]
    def generateInstance(self):

        def euc_dist(bor, sh):
            dx = bor["x_coord"] - sh["x_coord"]
            dy = bor["y_coord"] - sh["y_coord"]
            return math.sqrt(dx * dx + dy * dy)

        model = Model('FireSolver')

        # Generate variables
        x = {}
        for bor in self.boroughs:
            # New firehouses
            for fh in self.new_firehouses + self.old_firehouses:
                name = "x_" + fh["loc_id"] + "_" + bor["loc_id"]
                x[bor["loc_id"], fh["loc_id"]] = model.addVar(name=name, vtype ="b", obj=self.cost_coef * euc_dist(bor, fh))

        # Open variables
        openfh = {}
        for fh in self.new_firehouses:
            openfh[fh["loc_id"]] = model.addVar(name = "open_" + fh["loc_id"], vtype ="b", obj=fh["construction_cost"])

        # Close variables
        closefh = {}
        for fh in self.old_firehouses:
            closefh[fh["loc_id"]] = model.addVar(name = "close_" + fh["loc_id"], vtype ="b", obj=fh["destruction_cost"])

        model.modelSense = GRB.MINIMIZE
        model.update()

        # Constraints: one firehouse / borough
        for bor in self.boroughs:
            model.addConstr(quicksum(x[key] for key in x if key[0] == bor["loc_id"]) == 1)

        # capacity of firehouses
        for fh in self.new_firehouses:
            model.addConstr(quicksum(x[key] for key in x if key[1] == fh["loc_id"]) <= self.capacity * openfh[fh["loc_id"]])

        # If it is not removed, the initial assignment needs to be respected
        for fh in self.old_firehouses:
            for bor in self.boroughs:
                if bor["currently_protected_by"] == fh["loc_id"]:
                    model.addConstr(x[bor["loc_id"], fh["loc_id"]] == 1 - closefh[fh["loc_id"]])
                else:
                    model.addConstr(x[bor["loc_id"], fh["loc_id"]] == 0)
        
        # solve it
        model.optimize()

        self.model = model
开发者ID:DominikChmiel,项目名称:POMSS16,代码行数:52,代码来源:runfirehouses.py

示例6: _cut

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import optimize [as 别名]
    def _cut(self, model, val_func, cut_func):
        '''Returns true if a cut was added to the master'''
        problem = self.problem
        theta = self.theta
        x = self.x

        # Create subproblem.
        sub = Model()

        # y[ip,iq,s,c] = 1 if images ip & iq have a shared path through stage
        #                s by running command c during s, 0 otherwise
        y = {}
        for (ip, iq), cmds in problem.shared_cmds.items():
            for s, c in product(problem.shared_stages[ip, iq], cmds):
                y[ip,iq,s,c] = sub.addVar(name='y[%s,%s,%s,%s]' % (ip,iq,s,c))

        sub.update()

        # Find shared paths among image pairs.
        constraints = defaultdict(list)
        for (ip, iq), cmds in problem.shared_cmds.items():
            for s in problem.shared_stages[ip,iq]:
                for c in cmds:
                    constraints[ip,s,c].append(sub.addConstr(y[ip,iq,s,c] <= val_func(model, x[ip,s,c])))
                    constraints[iq,s,c].append(sub.addConstr(y[ip,iq,s,c] <= val_func(model, x[iq,s,c])))
                if s > 1:
                    sub.addConstr(sum(y[ip,iq,s,c] for c in cmds) <= sum(y[ip,iq,s-1,c] for c in cmds))

        sub.setObjective(
            -sum(problem.commands[c] * y[ip,iq,s,c] for ip,iq,s,c in y),
            GRB.MINIMIZE
        )
        sub.optimize()

        # Add the dual prices for each variable
        pi = defaultdict(float)
        for isp, cons in constraints.iteritems():
            for c in cons:
                pi[isp] += c.pi

        # Detect optimality
        if val_func(model, theta) >= sub.objVal:
            return False # no cuts to add

        # Optimality cut
        cut_func(model, theta >= sum(pi[isp]*x[isp] for isp in pi if pi[isp]))
        return True
开发者ID:ryanjoneil,项目名称:docker-image-construction,代码行数:49,代码来源:benders_model_gurobi.py

示例7: two_cycle

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import optimize [as 别名]
def two_cycle(A, C, gap):
    """
    Solve high-vertex dense graphs by reduction to
    weighted matching ILP.
    """
    _ = '*'
    m = Model()
    m.modelsense = GRB.MAXIMIZE
    m.params.mipgap = gap
    m.params.timelimit = 60 * 60

    n = A.shape[0]
    vars = {}
    edges = tuplelist()

    # model as undirected graph
    for i in range(n):
        for j in range(i+1, n):
            if A[i, j] == 1 and A[j, i] == 1:
                e = (i, j)
                edges.append(e)
                w_i = 2 if i in C else 1
                w_j = 2 if j in C else 1
                w = w_i + w_j
                var = m.addVar(vtype=GRB.BINARY, obj=w)
                vars[e] = var

    m.update()

    # 2 cycle constraint <=> undirected flow <= 1
    for i in range(n):
        lhs = LinExpr()
        lhs_vars = [vars[e] for e in chain(edges.select(i, _), edges.select(_, i))]
        ones = [1.0]*len(lhs_vars)
        lhs.addTerms(ones, lhs_vars)

        m.addConstr(lhs <= 1)

    m.optimize()
    m.update()

    cycles = [list(e) for e in edges if vars[e].x == 1.0]
    return cycles, m.objval
开发者ID:phlip9,项目名称:Kidney-Exchange-Solvers,代码行数:45,代码来源:solvers.py

示例8: build_gurobi_model

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import optimize [as 别名]
def build_gurobi_model(case):
    G, B = case.G, case.B
    P = real(case.demands)
    Q = imag(case.demands)
    branches = case.branch_list
    n = len(case.demands)
    vhat = case.vhat
    s2 = 2**.5
    gens = {bus: gen.v for bus, gen in case.gens.items()}
    del gens[0]

    m = GurobiModel("jabr")
    u = [m.addVar(name='u_%d'%i) for i in range(n)]
    R = {(i, j): m.addVar(name='R_%d_%d' % (i, j)) for i, j in branches}
    I = {(i, j): m.addVar(lb=-GRB.INFINITY, name='I_%d_%d' % (i, j)) for i, j in branches}
    for i, j in branches:
        R[j, i] = R[i, j]
        I[j, i] = I[i, j]
    m.update()
    m.addConstr(u[0] == vhat*vhat/s2, 'u0')
    for gen, v in gens.iteritems():
        m.addConstr(u[gen] == v*v/s2, 'u%d' % gen)
    for i, j in branches:
        m.addQConstr(2*u[i]*u[j] >= R[i,j]*R[i,j] + I[i,j]*I[i,j], 'cone_%d_%d' % (i, j))
    k = lambda i: (j for j in B[i, :].nonzero()[1])
    s = lambda i, j: 1 if i < j else -1
    for i in range(1, n):
        m.addConstr(-s2*u[i]*G[i, :].sum() + quicksum(G[i,j]*R[i,j] + B[i,j]*s(i,j)*I[i,j] for j in k(i)) == P[i],
                    'real_flow_%d_%d' % (i, j))
        if i in gens:
            continue
        m.addConstr(s2*u[i]*B[i, :].sum() + quicksum(-B[i,j]*R[i,j] + G[i,j]*s(i,j)*I[i,j] for j in k(i)) == Q[i],
                    'reac_flow_%d_%d' % (i, j))
    m.setObjective(quicksum(R[i,j] for i, j in branches), sense=GRB.MAXIMIZE)
    m.params.outputFlag = 0
    #m.params.barQCPConvTol = 5e-10
    m.optimize()
    if m.status != 2:
        raise ValueError("gurobi failed to converge: %s (check log)" % m.status)
    u_opt = [x.getAttr('x') for x in u]
    R_opt = {(i, j): x.getAttr('x') for (i, j), x in R.items()}
    I_opt = {(i, j): x.getAttr('x') for (i, j), x in I.items()}
    return u_opt, R_opt, I_opt
开发者ID:sharnett,项目名称:jabr-power-flow,代码行数:45,代码来源:jabr.py

示例9: solve

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import optimize [as 别名]
def solve(budget, buses, lines, u, c, b, S, D):
    m = Model('inhibit')
    w, v, y = {}, {}, {}
    for i in buses:
        w[i] = m.addVar(vtype=GRB.BINARY, name="w_%s" % i)
    for i, j in lines:
        v[i, j] = m.addVar(vtype=GRB.BINARY, name='v_%s_%s' % (i, j))
        y[i, j] = m.addVar(vtype=GRB.BINARY, name='y_%s_%s' % (i, j))
    m.update()

    for i, j in lines:
        m.addConstr(w[i]-w[j] <= v[i, j] + y[i, j], 'balance1_%s_%s' % (i, j))
        m.addConstr(w[j]-w[i] <= v[i, j] + y[i, j], 'balance2_%s_%s' % (i, j))
    m.addConstr(quicksum(c[i, j]*y[i, j] for i, j in lines) <= budget, 'budget')
        
    m.setObjective(quicksum(u[i, j]*v[i, j] for i, j in lines) +
                   quicksum(b[i]*(1-w[i]) for i in S) -
                   quicksum(b[i]*w[i] for i in D))
    
    m.setParam('OutputFlag', 0)
    m.optimize()
    m.write('gurobi.lp')
    return w, v, y, m
开发者ID:sharnett,项目名称:power-grid-attack,代码行数:25,代码来源:max_mismatch_heuristic.py

示例10: range

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import optimize [as 别名]
 
# Re-optimize until either we have run a certain number of iterations
# or complementary slackness conditions apply.
for k in range(1, 101):
    # max sum i,j: c_ij * x_ij
    model.setObjective(
        sum(
            # Original objective function
            sum(c_ij * x_ij for c_ij, x_ij in zip(c_i, x_i))
            for c_i, x_i in zip(c, x)
        ) + sum (
            # Penalties for dualized constraints
            u_j * p_j for u_j, p_j in zip(u, penalties)
        )
    )
    model.optimize()
 
    print 'iteration', k, 'obj =', model.objVal, \
        'u =', u, 'penalties =', [p.x for p in penalties]
 
    # Test for complementary slackness
    stop = True
    eps = 10e-6
    for u_i, p_i in zip(u, penalties):
        if abs(u_i) > eps and abs(p_i.x) > eps:
            stop = False
            break
 
    if stop:
        print 'primal feasible & optimal'
        break
开发者ID:ryanjoneil,项目名称:adventures-in-optimization,代码行数:33,代码来源:gap-lagrange.py

示例11: run_algorithm

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import optimize [as 别名]
    def run_algorithm(self):

        old_M = self.M
        old_items = [i.copy() for i in self.items]
        map_name_to_old_item = dict()
        for i in old_items:
            map_name_to_old_item[i.name] = i
        self.scale_items_by_cost()

        from gurobipy import Model, GRB
        model = Model("NP-Hard")

        print("Setting Model Parameters")
        # set timeout
        model.setParam('TimeLimit', 1600)
        model.setParam('MIPFocus', 3)
        model.setParam('PrePasses', 1)
        model.setParam('Heuristics', 0.01)
        model.setParam('Method', 0)

        map_name_to_item = dict()
        map_name_to_cost = dict()
        map_name_to_weight = dict()
        map_name_to_profit = dict()
        map_class_to_name = dict()
        
        item_names = list()

        print("Preprocessing data for model...")

        for item in self.items:
            item_names.append(item.name)
            map_name_to_item[item.name] = item
            map_name_to_cost[item.name] = item.cost
            map_name_to_weight[item.name] = item.weight
            map_name_to_profit[item.name] = item.profit
            if item.classNumber not in map_class_to_name:
                map_class_to_name[item.classNumber] = list()
            map_class_to_name[item.classNumber].append(item.name)

        class_numbers = list(map_class_to_name.keys())

        print("Setting model variables...")
        # binary variables =1, if use>0
        items = model.addVars(item_names, vtype=GRB.BINARY, name="items")
        classes = model.addVars(class_numbers, vtype=GRB.BINARY, name="class numbers")

        print("Setting model objective...")
        # maximize profit
        objective = items.prod(map_name_to_profit)
        model.setObjective(objective, GRB.MAXIMIZE)

        # constraints
        print("Setting model constraints")
        model.addConstr(items.prod(map_name_to_weight) <= self.P,"weight capacity")
        model.addConstr(items.prod(map_name_to_cost) <= self.M,"cost capacity")
        
        # if any item from a class is chosen, that class variable has to be a binary of 1
        for num in class_numbers:
            model.addGenConstrOr(classes[num], [items[x] for x in map_class_to_name[num]] ,name="class count")

        for c in self.raw_constraints:
            count = model.addVar()
            for n in c:
                if n in classes:
                    count += classes[n]
            model.addConstr(count <= 1, name="constraint")

        print("Start optimizing...")
        model.optimize()
        print("Done! ")

        # Status checking
        status = model.Status
        if status == GRB.Status.INF_OR_UNBD or \
           status == GRB.Status.INFEASIBLE  or \
           status == GRB.Status.UNBOUNDED:
            print('The model cannot be solved because it is infeasible or unbounded')

        if status != GRB.Status.OPTIMAL:
            print('Optimization was stopped with status ' + str(status))
            Problem = True

        try:
            model.write("mps_model/" + self.filename + ".sol")
        except Exception as e:
            pass

        print("Generating solution file...")
        # Display solution
        solution_names = list()
        for i, v in enumerate(items):
            try:
                if items[v].X > 0.9:
                    solution_names.append(item_names[i])
            except Exception as e:
                pass

        self.M = old_M
        self.items = old_items
#.........这里部分代码省略.........
开发者ID:Michael-Tu,项目名称:ClassWork,代码行数:103,代码来源:solver.py

示例12: Backup

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import optimize [as 别名]

#.........这里部分代码省略.........
        self.__model = Model('Backup')
    
        # Auxiliary variables for SOCP reformulation
        U = {}
        R = {}
      
        # Create variables
        for i,j in self.__links:
            self.__BackupCapacity[i,j] = self.__model.addVar(lb=0, obj=1, name='Backup_Capacity[%s,%s]' % (i, j))
        self.__model.update()
         
        for i,j in self.__links:
            for s,d in self.__links:
                self.__bBackupLink[i,j,s,d] = self.__model.addVar(vtype=GRB.BINARY,obj=1,name='Backup_Link[%s,%s,%s,%s]' % (i, j, s, d))
        self.__model.update()
        
        for i,j in self.__links:
            U[i,j] = self.__model.addVar(obj=1,name='U[%s,%s]' % (i, j))
        self.__model.update()
        
        for i,j in self.__links:
            for s,d in self.__links:
                R[i,j,s,d] = self.__model.addVar(obj=1,name='R[%s,%s,%s,%s]' % (i,j,s,d))
        self.__model.update()
        
        self.__model.modelSense = GRB.MINIMIZE
        #m.setObjective(quicksum([fixedCosts[p]*open[p] for p in plants]))
        self.__model.setObjective(quicksum(self.__BackupCapacity[i,j] for i,j in self.__links))
        self.__model.update()
        
           
        #------------------------------------------------------------------------#
        #                    Constraints definition                              #
        #                                                                        #
        #                                                                        #
        #------------------------------------------------------------------------#
         
        # Link capacity constraints
        for i,j in self.__links:
            self.__model.addConstr(self.__BackupCapacity[i,j] >= quicksum(self.__mean[s,d]*self.__bBackupLink[i,j,s,d] for (s,d) in self.__links) + U[i,j]*self.__invstd,'[CONST]Link_Cap_%s_%s' % (i, j))
        self.__model.update()
            
        # SCOP Reformulation Constraints
        for i,j in self.__links:
            self.__model.addConstr(quicksum(R[i,j,s,d]*R[i,j,s,d] for (s,d) in self.__links) <= U[i,j]*U[i,j],'[CONST]SCOP1[%s][%s]' % (i, j))
        self.__model.update()
            
        # SCOP Reformulation Constraints    
        for i,j in self.__links:
            for s,d in self.__links:
                self.__model.addConstr(self.__std[s,d]*self.__bBackupLink[i,j,s,d] == R[i,j,s,d],'[CONST]SCOP2[%s][%s][%s][%s]' % (i, j,s,d))
        self.__model.update()
        
        for i in self.__nodes:
            for s,d in self.__links:
                # Flow conservation constraints
                if i == s:
                    self.__model.addConstr(quicksum(self.__bBackupLink[i,j,s,d] for i,j in self.__links.select(i,'*')) - 
                                           quicksum(self.__bBackupLink[j,i,s,d] for j,i in self.__links.select('*',i)) == 1,'Flow1[%s,%s,%s,%s]' % (i,j,s, d))
                # Flow conservation constraints
                elif i == d:
                    self.__model.addConstr(quicksum(self.__bBackupLink[i,j,s,d] for i,j in self.__links.select(i,'*')) - 
                                           quicksum(self.__bBackupLink[j,i,s,d] for j,i in self.__links.select('*',i)) == -1,'Flow2[%s,%s,%s,%s]' % (i,j,s, d))
                # Flow conservation constraints
                else:    
                    self.__model.addConstr(quicksum(self.__bBackupLink[i,j,s,d] for i,j in self.__links.select(i,'*')) - 
                                           quicksum(self.__bBackupLink[j,i,s,d] for j,i in self.__links.select('*',i)) == 0,'Flow3[%s,%s,%s,%s]' % (i,j,s, d))
        self.__model.update()
                
        
    def optimize(self,MipGap, TimeLimit):
        
        self.__model.write('backup.lp')
        
        if MipGap != None:
            self.__model.params.timeLimit = TimeLimit
        if TimeLimit != None:
            self.__model.params.MIPGap = MipGap
         
        # Compute optimal solution
        self.__model.optimize()
        
        # Print solution
        if self.__model.status == GRB.Status.OPTIMAL:
            solution = self.__model.getAttr('x', self.__BackupCapacity)
            for i,j in self.__links:
                if solution[i,j] > 0:
                    print('%s -> %s: %g' % (i, j, solution[i,j]))
            
        else:
            print('Optimal value not found!\n')
            solution = []
            
        return solution;    
    
    def reset(self):
        '''
        Reset model solution
        '''
        self.__model.reset()
开发者ID:edielsonpf,项目名称:robust-network-optimization,代码行数:104,代码来源:NormalBackupModel.py

示例13: __optmize_single_project

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import optimize [as 别名]
    def __optmize_single_project(self, x, j):
        '''
        Given the generated x for single project, try to optimize the tardiness of the project.
        :param x: the assignment of resource supplier to project
        :param j: index of project
        :return:
        '''
        m = Model("SingleProject_%d" % j)

        #### Create variables ####
        project = self.project_list[j]

        ## Project complete data,Project Tadeness,construction completion time
        CT = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="(CT%d)" % j)

        ## Activity start time
        ST = {}
        project_activities = self.project_activity[project]
        # print(project_activities.nodes())
        for row in project_activities.nodes():
            ST[row] = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="(ST%d,%s)" % (j, row))

        ## Review sequence z_ij
        ## move to annealing objective function

        # y
        y = {}
        for activity_i in project_activities.nodes():
            for activity_j in project_activities.nodes():
                # print(project_activities.node[activity_i])
                # print(dir(project_activities.node[activity_i]))
                if activity_i != activity_j and len(list(
                        set(project_activities.node[activity_i]['rk_resources']).intersection(
                            project_activities.node[activity_j]['rk_resources']))) > 0:
                    y[activity_i, activity_j] = m.addVar(obj=0, vtype=GRB.BINARY,
                                                         name="(y%d,%s,%s)" % (j, activity_i, activity_j))
        m.update()

        #### Create constrains ####
        ## Constrain 2: project complete data>due data
        ## move to annealing objective function

        ## Constrain 3: supplier capacity limit
        ## move to annealing neighbor & random generator

        ## Constrain 4,6: project demand require; each project receive from one supplier for each resource
        ## move to annealing neighbor & random generator

        ## constrain 5: shipping constrain
        ## move to annealing neighbor & random generator

        ## Constrain 7:budget limit
        ## move to annealing constraint valid

        ## Constrain 8: activity starting constrain
        for a in project_activities.nodes():
            for r in project_activities.node[a]['resources']:
                resource_delivered_days = 0
                for s in self.resource_supplier_list[r]:
                    resource_delivered_days += x.get((r, s, project), 0) * \
                                               (self.resource_supplier_release_time[r, s] +
                                                self.supplier_project_shipping[
                                                    r, s, project])
                m.addConstr(resource_delivered_days, GRB.LESS_EQUAL, ST[a],
                            name="constraint_8_project_%d_activity_%s_resource_%s" % (j, a, r))

        ## Constrain 9 activity sequence constrain
        for row1, row2 in project_activities.edges():
            # print(row1, '#', row2, '#', j)
            # print(ST)
            m.addConstr(ST[row1] + project_activities.node[row1]['duration'], GRB.LESS_EQUAL,
                        ST[row2], name="constraint_9_project_%d_activity_%s_activity_%s" % (j, row1, row2))

        ## Constrain 10,11
        for row1 in project_activities.nodes():
            for row2 in project_activities.nodes():
                if row1 != row2 and len(list(
                        set(project_activities.node[row1]['rk_resources']).intersection(
                            project_activities.node[row2]['rk_resources']))) > 0:
                    m.addConstr(ST[row1] + project_activities.node[row1]['duration'] - self.M * (
                        1 - y[row1, row2]), GRB.LESS_EQUAL, ST[row2],
                                name="constraint_10_project_%d_activity_%s_activity_%s" % (j, row1, row2))
                    m.addConstr(
                        ST[row2] + project_activities.node[row2]['duration'] - self.M * (y[row1, row2]),
                        GRB.LESS_EQUAL, ST[row1],
                        name="constraint_11_project_%d_activity_%s_activity_%s" % (j, row1, row2))
                    # m.addConstr(y[j,row1,row2]+y[j,row2,row1],GRB.LESS_EQUAL,1)

        ## Constrain 12
        for row in project_activities.nodes():
            # print(project_activities.node[row]['duration'])
            m.addConstr(CT, GRB.GREATER_EQUAL, ST[row] + project_activities.node[row]['duration'],
                        name="constraint_12_project_%d_activity_%s" % (j, row))

        ## Constrain 13
        ## move to anealing objective function

        ## Constrain 14
        ## move to anealing objective function

#.........这里部分代码省略.........
开发者ID:abucus,项目名称:zw_project,代码行数:103,代码来源:heuristic.py

示例14: __objective_function

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import optimize [as 别名]
    def __objective_function(self, x, q):
        m = Model("Overall_Model")

        CT = {}
        DT = {}
        TD = {}

        #### Add Variable ####

        for j in range(self.project_n):
            ## solve individual model get Project complete date
            CT[j] = self.__optmize_single_project(x, j)

            ## Project Tadeness,construction completion time
            DT[j] = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="(DT%d)" % j)
            TD[j] = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="(TD%d)" % j)

        DT[-1] = m.addVar(obj=0, vtype=GRB.CONTINUOUS, name="(DT-1)")

        ## Review Sequence z_ij
        z = {}
        for i in range(self.project_n):
            for j in range(self.project_n):
                if i != j:
                    z[i, j] = m.addVar(obj=0, vtype=GRB.BINARY, name="(z%d,%d)" % (i, j))

        for j in range(self.project_n):
            z[-1, j] = m.addVar(obj=0, vtype=GRB.BINARY, name="(z%d,%d)" % (-1, j))
        m.update();

        #### Add Constraint ####
        ## Constrain 2: project complete data>due data ##
        for j in range(self.project_n):
            m.addConstr(DT[j] - TD[j], GRB.LESS_EQUAL, self.DD[j], name="constraint_2_project_%d" % j)

        ## Constraint 13
        for j in range(self.project_n):
            m.addConstr(DT[j], GRB.GREATER_EQUAL, CT[j] + self.review_duration[j], name="constraint_13_project_%d" % j)

        ## Constraint 14
        for i in range(-1, self.project_n):
            for j in range(self.project_n):
                if i != j:
                    m.addConstr(DT[j], GRB.GREATER_EQUAL, DT[i] - self.M * (1 - z[i, j]) + self.review_duration[j],
                                name="constraint_14_project_%d_project_%d" % (i, j))

        ## Constrain 15
        for j in range(self.project_n):
            m.addConstr(quicksum(z[i, j] for i in range(-1, self.project_n) if i != j), GRB.EQUAL, 1,
                        name="constraint_15_project_%d" % j)

        ## Constrain 16
        m.addConstr(quicksum(z[-1, j] for j in range(self.project_n)), GRB.EQUAL, 1, name="constraint_16")

        ## Constrain 17
        for i in range(self.project_n):
            m.addConstr(quicksum(z[i, j] for j in range(self.project_n) if j != i), GRB.LESS_EQUAL, 1,
                        name="constraint_17_project_%d" % i)
        m.update()

        # Set optimization objective - minimize sum of
        expr = LinExpr()
        for j in range(self.project_n):
            expr.add(self.w[j] * TD[j])
        m.setObjective(expr, GRB.MINIMIZE)
        m.update()

        m.params.presolve = 1
        m.update()

        m.optimize()
        m.write(join(self.output_dir, "heuristic_whole.lp"))
        m.write(join(self.output_dir, "heuristic_whole.sol"))
        print([self.w[j] * TD[j].X for j in range(self.project_n)])
        return m.objVal, argmax([self.w[j] * TD[j].X for j in range(self.project_n)])
开发者ID:abucus,项目名称:zw_project,代码行数:77,代码来源:heuristic.py

示例15: get_mapping

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import optimize [as 别名]
def get_mapping(PG, VG):
    vnodes, vhosts = multidict({n: len(VG.node[n]['host_ports']) for n in VG.nodes()})
    pnodes, phosts = multidict({n: len(PG.node[n]['host_ports']) for n in PG.nodes()})
    parcs, pcapacity = multidict({(m, n): PG.edge[m][n]['weight'] for (m, n) in PG.edges()})
    parcs = tuplelist(parcs)

    varcs, vcapacity = multidict({(m, n): VG.edge[m][n]['weight'] for (m, n) in VG.edges()})
    varcs = tuplelist(varcs)

    m = Model('mapping')

    # Create variables
    node_mapping = {}
    for i in vnodes:
        for j in pnodes:
            node_mapping[i, j] = m.addVar(vtype=GRB.BINARY, name="x_%s_%s" % (i, j))


    edge_mapping = {}
    for i in vnodes:
        for p in VG.neighbors(i):
            for (j, q) in parcs:
                edge_mapping[i, p, j, q] = m.addVar(vtype=GRB.BINARY, name="y_%s_%s_%s_%s" % (i, p, j, q))

    m.update()

    # Arc capacity constraints
    for i in vnodes:
        m.addConstr(quicksum(node_mapping[i, j] for j in pnodes) == 1, 'node_%s' % i)

    for i in vnodes:
        for p in VG.neighbors(i):
            for (j, q) in parcs:
                m.addConstr(edge_mapping[i, p, j, q] <= ( node_mapping[i, j] + node_mapping[p, q] )/2, 'edge_%s_%s_%s_%s' % (i, p, j, q))

    for (j, q) in parcs:
        m.addConstr(quicksum(edge_mapping[i, p, j, q] + edge_mapping[p, i, j, q]for (i, p) in varcs) <= pcapacity[j, q], 'pcap_%s_%s' % (j, q))

    for (i, p) in varcs:
        m.addConstr(quicksum(edge_mapping[i, p, j, q] + edge_mapping[p, i, j, q] for (j, q) in parcs) >= vcapacity[i, p], 'vcap_%s_%s' % (i, p))

    for j in pnodes:
        m.addConstr(quicksum(node_mapping[i, j] * vhosts[i] for i in vnodes) <= phosts[j], 'phosts_%s' % j)
    for i in vnodes:
        m.addConstr(quicksum(node_mapping[i, j] * phosts[j] for j in pnodes) >= vhosts[i], 'vhosts_%s' % i)
    # Compute optimal solution
    m.optimize()

    # Print solution
    if m.status == GRB.status.OPTIMAL:
        mapping = {}
        mapping2 = {}
        portlist = {}

        for n in PG:
            if 'host_ports' in PG.node[n]:
                portlist[n] = PG.node[n]['host_ports']

        solution = m.getAttr('x', edge_mapping)
        for h in solution:
            if solution[h] == 1.0:
                vid1, vid2, pid1, pid2 = h
                vport1, vport2 = list(VG.node[vid1]['links'][vid2])[0]

                if (vid1, pid1) not in mapping:
                    mapping[(vid1, pid1)] =[vid1, pid1]
                if (pid1, vid1) not in mapping2:
                    mapping2[(pid1, vid1)] =[pid1, vid1]
                (pport1, pport2) = PG.node[pid1]['links'][pid2].pop()
                # print vid1, vid2, pid1, pid2, pport1, pport2
                if pid1 != pid2:
                    PG.node[pid2]['links'][pid1].remove((pport2, pport1))
                mapping[(vid1, pid1)].append(vport1)
                mapping[(vid1, pid1)].append(pport1)
                mapping2[(pid1, vid1)].append(pport1)
                mapping2[(pid1, vid1)].append(vport1)

                if (vid2, pid2) not in mapping:
                    mapping[(vid2, pid2)] =[vid2, pid2]
                if (pid2, vid2) not in mapping2:
                    mapping2[(pid2, vid2)] =[pid2, vid2]
                mapping[(vid2, pid2)].append(vport2)
                mapping[(vid2, pid2)].append(pport2)
                mapping2[(pid2, vid2)].append(pport2)
                mapping2[(pid2, vid2)].append(vport2)

        solution2 = m.getAttr('x', node_mapping)
        print [h for h in solution2 if solution2[h] == 1.0]
        for h in solution2:
            if solution2[h] == 1.0:
                vid, pid = h
                if len(VG.node[vid]['host_ports']) == 0:
                    continue

                for vport in VG.node[vid]['host_ports']:
                    pport = portlist[pid].pop()
                    mapping[(vid, pid)].append(vport)
                    mapping[(vid, pid)].append(pport)
                    mapping2[(pid, vid)].append(pport)
                    mapping2[(pid, vid)].append(vport)
#.........这里部分代码省略.........
开发者ID:kylejao,项目名称:ocean,代码行数:103,代码来源:get_mapping.py


注:本文中的gurobipy.Model.optimize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。