当前位置: 首页>>代码示例>>Python>>正文


Python Model.reset方法代码示例

本文整理汇总了Python中gurobipy.Model.reset方法的典型用法代码示例。如果您正苦于以下问题:Python Model.reset方法的具体用法?Python Model.reset怎么用?Python Model.reset使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在gurobipy.Model的用法示例。


在下文中一共展示了Model.reset方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: BFPBackupNetwork_Continuous

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import reset [as 别名]

#.........这里部分代码省略.........
        if TimeLimit != None:
            self.model.params.timeLimit = TimeLimit
        # Compute optimal solution
        self.model.optimize()

        # Print solution
        if self.model.status == GRB.Status.OPTIMAL:

            if LogLevel == 1:
                for v in self.model.getVars():
                    print("%s %g" % (v.varName, v.x))

            self.BackupCapacitySolution = self.model.getAttr("x", self.BackupCapacity)
            self.BackupRoutesSolution = self.model.getAttr("x", self.bBackupLink)

            self.BackupLinksSolution = {}
            self.HatBackupCapacity = {}
            for link in self.BackupCapacitySolution:
                if self.BackupCapacitySolution[link] < 1 and self.BackupCapacitySolution[link] > 0.001:
                    self.HatBackupCapacity[link] = math.ceil(self.BackupCapacitySolution[link])
                else:
                    self.HatBackupCapacity[link] = math.floor(self.BackupCapacitySolution[link])
                if self.HatBackupCapacity[link] > 0:
                    if len(self.BackupLinksSolution) == 0:
                        self.BackupLinksSolution = [link]
                    else:
                        self.BackupLinksSolution = self.BackupLinksSolution + [link]
        else:
            print("Optimal value not found!\n")
            self.BackupCapacitySolution = []
            self.BackupRoutesSolution = {}
            self.BackupLinksSolution = {}

        return self.BackupCapacitySolution, self.BackupRoutesSolution, self.BackupLinksSolution, self.HatBackupCapacity

    def SaveBakupNetwork(self, file_name):
        """Save the optimal backup network to the file ``file_name``."""

        data = {
            "links": [i for i in self.BackupCapacitySolution],
            "capacities": [self.BackupCapacitySolution[i] for i in self.BackupCapacitySolution],
            "routes": [i for i in self.BackupRoutesSolution],
            "status": [self.BackupRoutesSolution[i] for i in self.BackupRoutesSolution],
        }
        f = open(file_name, "w")
        json.dump(data, f)
        f.close()

    def LoadBackupNetwork(self, file_name):
        """Load a backup network from the file ``file_name``.  
        Returns the backup network solution saved in the file. 
      
        """
        f = open(file_name, "r")
        data = json.load(f)
        f.close()

        self.BackupCapacitySolution = {}
        self.BackupRoutesSolution = {}
        self.BackupLinksSolution = {}

        links = [i for i in data["links"]]
        capacities = [i for i in data["capacities"]]
        routes = [i for i in data["routes"]]
        status = [i for i in data["status"]]

        IndexAux = 0
        for i, j in links:
            self.BackupCapacitySolution[i, j] = capacities[IndexAux]
            IndexAux = IndexAux + 1

        self.HatBackupCapacity = {}
        for link in self.BackupCapacitySolution:
            if self.BackupCapacitySolution[link] < 1 and self.BackupCapacitySolution[link] > 0.001:
                self.HatBackupCapacity[link] = math.ceil(self.BackupCapacitySolution[link])
            else:
                self.HatBackupCapacity[link] = math.floor(self.BackupCapacitySolution[link])
            if self.HatBackupCapacity[link] > 0:
                if len(self.BackupLinksSolution) == 0:
                    self.BackupLinksSolution = [link]
                else:
                    self.BackupLinksSolution = self.BackupLinksSolution + [link]

        IndexAux = 0
        for i, j, s, d in routes:
            self.BackupRoutesSolution[i, j, s, d] = status[IndexAux]
            IndexAux = IndexAux + 1

        return self.BackupCapacitySolution, self.BackupRoutesSolution, self.BackupLinksSolution, self.HatBackupCapacity

    def ResetModel(self):
        """
        Reset model solution.
        """
        self.BackupCapacity = {}
        self.bBackupLink = {}
        self.z0 = {}
        self.z = {}
        if self.model:
            self.model.reset()
开发者ID:edielsonpf,项目名称:robust-network-optimization,代码行数:104,代码来源:BFPBackupModel_Continuous.py

示例2: Backup

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import reset [as 别名]

#.........这里部分代码省略.........
        self.__model = Model('Backup')
    
        # Auxiliary variables for SOCP reformulation
        U = {}
        R = {}
      
        # Create variables
        for i,j in self.__links:
            self.__BackupCapacity[i,j] = self.__model.addVar(lb=0, obj=1, name='Backup_Capacity[%s,%s]' % (i, j))
        self.__model.update()
         
        for i,j in self.__links:
            for s,d in self.__links:
                self.__bBackupLink[i,j,s,d] = self.__model.addVar(vtype=GRB.BINARY,obj=1,name='Backup_Link[%s,%s,%s,%s]' % (i, j, s, d))
        self.__model.update()
        
        for i,j in self.__links:
            U[i,j] = self.__model.addVar(obj=1,name='U[%s,%s]' % (i, j))
        self.__model.update()
        
        for i,j in self.__links:
            for s,d in self.__links:
                R[i,j,s,d] = self.__model.addVar(obj=1,name='R[%s,%s,%s,%s]' % (i,j,s,d))
        self.__model.update()
        
        self.__model.modelSense = GRB.MINIMIZE
        #m.setObjective(quicksum([fixedCosts[p]*open[p] for p in plants]))
        self.__model.setObjective(quicksum(self.__BackupCapacity[i,j] for i,j in self.__links))
        self.__model.update()
        
           
        #------------------------------------------------------------------------#
        #                    Constraints definition                              #
        #                                                                        #
        #                                                                        #
        #------------------------------------------------------------------------#
         
        # Link capacity constraints
        for i,j in self.__links:
            self.__model.addConstr(self.__BackupCapacity[i,j] >= quicksum(self.__mean[s,d]*self.__bBackupLink[i,j,s,d] for (s,d) in self.__links) + U[i,j]*self.__invstd,'[CONST]Link_Cap_%s_%s' % (i, j))
        self.__model.update()
            
        # SCOP Reformulation Constraints
        for i,j in self.__links:
            self.__model.addConstr(quicksum(R[i,j,s,d]*R[i,j,s,d] for (s,d) in self.__links) <= U[i,j]*U[i,j],'[CONST]SCOP1[%s][%s]' % (i, j))
        self.__model.update()
            
        # SCOP Reformulation Constraints    
        for i,j in self.__links:
            for s,d in self.__links:
                self.__model.addConstr(self.__std[s,d]*self.__bBackupLink[i,j,s,d] == R[i,j,s,d],'[CONST]SCOP2[%s][%s][%s][%s]' % (i, j,s,d))
        self.__model.update()
        
        for i in self.__nodes:
            for s,d in self.__links:
                # Flow conservation constraints
                if i == s:
                    self.__model.addConstr(quicksum(self.__bBackupLink[i,j,s,d] for i,j in self.__links.select(i,'*')) - 
                                           quicksum(self.__bBackupLink[j,i,s,d] for j,i in self.__links.select('*',i)) == 1,'Flow1[%s,%s,%s,%s]' % (i,j,s, d))
                # Flow conservation constraints
                elif i == d:
                    self.__model.addConstr(quicksum(self.__bBackupLink[i,j,s,d] for i,j in self.__links.select(i,'*')) - 
                                           quicksum(self.__bBackupLink[j,i,s,d] for j,i in self.__links.select('*',i)) == -1,'Flow2[%s,%s,%s,%s]' % (i,j,s, d))
                # Flow conservation constraints
                else:    
                    self.__model.addConstr(quicksum(self.__bBackupLink[i,j,s,d] for i,j in self.__links.select(i,'*')) - 
                                           quicksum(self.__bBackupLink[j,i,s,d] for j,i in self.__links.select('*',i)) == 0,'Flow3[%s,%s,%s,%s]' % (i,j,s, d))
        self.__model.update()
                
        
    def optimize(self,MipGap, TimeLimit):
        
        self.__model.write('backup.lp')
        
        if MipGap != None:
            self.__model.params.timeLimit = TimeLimit
        if TimeLimit != None:
            self.__model.params.MIPGap = MipGap
         
        # Compute optimal solution
        self.__model.optimize()
        
        # Print solution
        if self.__model.status == GRB.Status.OPTIMAL:
            solution = self.__model.getAttr('x', self.__BackupCapacity)
            for i,j in self.__links:
                if solution[i,j] > 0:
                    print('%s -> %s: %g' % (i, j, solution[i,j]))
            
        else:
            print('Optimal value not found!\n')
            solution = []
            
        return solution;    
    
    def reset(self):
        '''
        Reset model solution
        '''
        self.__model.reset()
开发者ID:edielsonpf,项目名称:robust-network-optimization,代码行数:104,代码来源:NormalBackupModel.py

示例3: SQModel

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import reset [as 别名]

#.........这里部分代码省略.........
        
    def __init__(self,imp_samp,nodes,links,capacity,epsilon,N,backup_link,link_capacity):
        '''
        Constructor
        '''
        self.__links = links
        self.__nodes = nodes
        self.__capacity = capacity
        self.__epsilon = epsilon
        self.__N = N
        self.__loadModel(imp_samp,backup_link,link_capacity)
                                 
    def __loadModel(self,imp_samp, backup_link,link_capacity):
                 
        # Create optimization model
        self.__model = Model('Backup')
     
        for i,j in self.__links:
            for k in range(self.__N):
                self.__z[k,i,j] = self.__model.addVar(lb=0,name='z[%s][%s][%s]' % (k,i,j))
        self.__model.update()
        
        for i,j in self.__links: 
            self.__z0[i,j] = self.__model.addVar(lb=-GRB.INFINITY,name='z0[%s][%s]' %(i,j))
        self.__model.update()
         
        for i,j in self.__links: 
            self.__q[i,j] = self.__model.addVar(lb=-GRB.INFINITY,name='q[%s][%s]' %(i,j))
        self.__model.update()
        
        self.__model.modelSense = GRB.MINIMIZE
        
        self.__model.setObjective(quicksum(self.__q[i,j] for i,j in self.__links))
        
        self.__model.update()
         
            
        #------------------------------------------------------------------------#
        #                    Constraints definition                              #
        #                                                                        #
        #                                                                        #
        #------------------------------------------------------------------------#
          
        # Buffer probability I
        for i,j in self.__links:
            self.__model.addConstr(self.__z0[i,j] + 1/(self.__N*self.__epsilon)*quicksum(self.__z[k,i,j]*imp_samp[k] for (k) in range(self.__N)) <= self.__q[i,j],'[CONST]Buffer_Prob_I[%s][%s]'%(i,j))
        self.__model.update()
         
        # Link capacity constraints
        for i,j in self.__links:
            for k in range(self.__N):
                self.__model.addConstr((quicksum(backup_link[i,j,s,d]*self.__capacity[k,s,d] for s,d in self.__links) - link_capacity[i,j] - self.__z0[i,j]) <= self.__z[k,i,j],'[CONST]Buffer_Prob_II[%s][%s][%s]' % (k,i,j))
        self.__model.update()
        
        # Link capacity constraints
        for i,j in self.__links:
            for k in range(self.__N):
                self.__model.addConstr(self.__z[k,i,j] >= 0,'[CONST]Buffer_Prob_III[%s][%s][%s]' % (k,i,j))
        self.__model.update()
         
    def optimize(self,MipGap, TimeLimit, LogLevel = None):
         
        self.__model.write('quantile.lp')
         
        if MipGap != None:
            self.__model.params.MIPGap = MipGap
        if TimeLimit != None:
            self.__model.params.timeLimit = TimeLimit
        # Compute optimal solution
        self.__model.optimize()
         
        # Print solution
        if self.__model.status == GRB.Status.OPTIMAL:
            #SuperQuantileSolution = self.__model.getAttr('x', self.__z0)
            SuperQuantileSolution = {}
            OptimalZnot = {}
            for i,j in self.__links:
                name='q[%s][%s]'%(i,j)
                v = self.__model.getVarByName(name)
                SuperQuantileSolution[i,j]=v.x
                name='z0[%s][%s]'%(i,j)
                v = self.__model.getVarByName(name)
                OptimalZnot[i,j]=v.x
            
            if LogLevel == 1:
                for v in self.__model.getVars():
                    print('%s %g' % (v.varName, v.x))
                                                
        else:
            print('Optimal value not found!\n')
            SuperQuantileSolution = {}
            OptimalZnot={}
                         
        return SuperQuantileSolution, OptimalZnot    
    
    def reset(self):
        '''
        Reset model solution
        '''
        self.__model.reset()
开发者ID:edielsonpf,项目名称:robust-network-optimization,代码行数:104,代码来源:SuperquantileModel.py

示例4: _optimize_gurobi

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import reset [as 别名]

#.........这里部分代码省略.........
        #Set objective to quadratic program
        if quadratic_component is not None:
            if not hasattr(quadratic_component, 'todok'):
                raise Exception('quadratic component must be a scipy.sparse type array')

            quadratic_objective = QuadExpr()
            for (index_0, index_1), the_value in quadratic_component.todok().items():
                quadratic_objective.addTerms(the_value,
                                       variable_list[index_0],
                                       variable_list[index_1])
            lp.setObjective(quadratic_objective, sense=objective_sense)
        #Constraints are based on mass balance
        #Construct the lin expression lists and then add
        #TODO: Speed this up as it takes about .18 seconds
        #HERE
        for the_metabolite in cobra_model.metabolites:
            constraint_coefficients = []
            constraint_variables = []
            for the_reaction in the_metabolite._reaction:
                constraint_coefficients.append(the_reaction._metabolites[the_metabolite])
                constraint_variables.append(reaction_to_variable[the_reaction])
            #Add the metabolite to the problem
            lp.addConstr(LinExpr(constraint_coefficients, constraint_variables),
                         sense_dict[the_metabolite._constraint_sense.upper()],
                         the_metabolite._bound,
                         the_metabolite.id)
    else:
        #When reusing the basis only assume that the objective coefficients or bounds can change
        if copy_problem:
            lp = the_problem.copy()
        else:
            lp = the_problem
        if not reuse_basis:
            lp.reset()
        for the_variable, the_reaction in zip(lp.getVars(),
                                              cobra_model.reactions):
            the_variable.lb = float(the_reaction.lower_bound)
            the_variable.ub = float(the_reaction.upper_bound)
            the_variable.obj = float(objective_sense*the_reaction.objective_coefficient)

    
    if the_problem == 'setup':
        return lp
    if print_solver_time:
        start_time = time()
    lp.update()
    lp.setParam("FeasibilityTol", tolerance_feasibility)
    lp.setParam("OptimalityTol", tolerance_optimality) 
    if tolerance_barrier:
        lp.setParam("BarConvTol", tolerance_barrier)

    if quad_precision:
            lp.setParam("Quad", 1)
    lp.setParam("Method", lp_method)

    #Different methods to try if lp_method fails
    the_methods = [0, 2, 1]
    if lp_method in the_methods:
        the_methods.remove(lp_method)
    if not isinstance(the_problem, Model):
        lp.optimize()
        if lp.status in status_dict:
            status = status_dict[lp.status]
        else:
            status = 'failed'
        if status != 'optimal':
开发者ID:mp11,项目名称:cobra_ext,代码行数:70,代码来源:legacy.py

示例5: PathBackup

# 需要导入模块: from gurobipy import Model [as 别名]
# 或者: from gurobipy.Model import reset [as 别名]

#.........这里部分代码省略.........
    def __loadModel(self):
                
        # Create optimization model
        self.__model = Model('PathBackup')
    
        # Auxiliary variables for SOCP reformulation
        U = {}
        R = {}
        
        # Create variables
        for i,j in self.__links:
            self.__BackupCapacity[i,j] = self.__model.addVar(lb=0, obj=1, name='Backup_Capacity[%s,%s]' % (i, j))
        self.__model.update()
         
        for p in self.__paths:
            #LP Relaxation
            #self.__bPath[self.__paths.index(p)] = self.__model.addVar(lb=0,obj=1,name='Backup_Path[%s]' % (self.__paths.index(p)))
            self.__bPath[self.__paths.index(p)] = self.__model.addVar(vtype=GRB.BINARY,obj=1,name='Backup_Path[%s]' % (self.__paths.index(p)))
        self.__model.update()
        
        for i,j in self.__links:
            U[i,j] = self.__model.addVar(obj=1,name='U[%s,%s]' % (i, j))
        self.__model.update()
        
        for i,j in self.__links:
            for s,d in self.__links:
                R[i,j,s,d] = self.__model.addVar(obj=1,name='R[%s,%s,%s,%s]' % (i,j,s,d))
        self.__model.update()
        
        self.__model.modelSense = GRB.MINIMIZE
        self.__model.setObjective(quicksum(self.__BackupCapacity[i,j] for i,j in self.__links))
        self.__model.update()
        
           
        #------------------------------------------------------------------------#
        #                    Constraints definition                              #
        #                                                                        #
        #                                                                        #
        #------------------------------------------------------------------------#
         
        # Link capacity constraints
        for i,j in self.__links:
            self.__model.addConstr(self.__BackupCapacity[i,j] >= quicksum(self.__mean[s,d]*quicksum(self.__bPath[self.__paths.index(p)] for p in self.__Pij[i,j,s,d]) for s,d in self.__links) + U[i,j]*self.__invstd,'[CONST]Link_Cap[%s][%s]' % (i, j))
        self.__model.update()
            
        # SCOP Reformulation Constraints
        for i,j in self.__links:
            self.__model.addConstr(quicksum(R[i,j,s,d]*R[i,j,s,d] for s,d in self.__links) <= U[i,j]*U[i,j],'[CONST]SCOP1[%s][%s]' % (i, j))
        self.__model.update()
            
        # SCOP Reformulation Constraints    
        for i,j in self.__links:
            for s,d in self.__links:
                self.__model.addConstr(self.__std[s,d]*quicksum(self.__bPath[self.__paths.index(p)] for p in self.__Pij[i,j,s,d]) == R[i,j,s,d],'[CONST]SCOP2[%s][%s][%s][%s]' % (i,j,s,d))
        self.__model.update()
        
        # Unique path 
        for s,d in self.__links:
            self.__model.addConstr(quicksum(self.__bPath[self.__paths.index(p)] for p in self.__Psd[s,d]) == 1,'UniquePath[%s,%s]' % (s, d))
        self.__model.update()
        
    def optimize(self,MipGap,TimeLimit):
        
        self.__model.write('pathbackup.lp')
 
        if TimeLimit != None:
            self.__model.params.timeLimit = TimeLimit
        
        if MipGap != None:
            self.__model.params.MIPGap=MipGap
         
        # Compute optimal solution
        self.__model.optimize()
        
        # Print solution
        if self.__model.status == GRB.Status.OPTIMAL:
            solution = self.__model.getAttr('x', self.__bPath)
            for p in self.__paths:
                if solution[self.__paths.index(p)] > 0.001:
                    print('Path[%s] = %s = %s' % (self.__paths.index(p),p,solution[self.__paths.index(p)]))
            solution = self.__model.getAttr('x', self.__BackupCapacity)
            for i,j in self.__links:
                if solution[i,j] > 0:
                    print('%s -> %s: %g' % (i, j, solution[i,j]))
            
        else:
            print('Optimal value not found!\n')
            solution = self.__model.getAttr('x', self.__BackupCapacity)
            for i,j in self.__links:
                if solution[i,j] > 0:
                    print('%s -> %s: %g' % (i, j, solution[i,j]))
            #solution = []
            
        return solution;    
    
    def reset(self):
        '''
        Reset model solution
        '''
        self.__model.reset()
开发者ID:edielsonpf,项目名称:robust-network-optimization,代码行数:104,代码来源:PathBackupModel.py


注:本文中的gurobipy.Model.reset方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。