本文整理汇总了Python中gnome.outputters.Renderer.viewport方法的典型用法代码示例。如果您正苦于以下问题:Python Renderer.viewport方法的具体用法?Python Renderer.viewport怎么用?Python Renderer.viewport使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类gnome.outputters.Renderer
的用法示例。
在下文中一共展示了Renderer.viewport方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: make_model
# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, "images")):
print "initializing the model"
# set up the modeling environment
start_time = datetime(2004, 12, 31, 13, 0)
model = Model(start_time=start_time, duration=timedelta(days=3), time_step=30 * 60, uncertain=False)
print "adding the map"
model.map = GnomeMap() # this is a "water world -- no land anywhere"
# renderere is only top-down view on 2d -- but it's something
renderer = Renderer(output_dir=images_dir, size=(1024, 768), output_timestep=timedelta(hours=1))
renderer.viewport = ((-0.15, -0.35), (0.15, 0.35))
print "adding outputters"
model.outputters += renderer
# Also going to write the results out to a netcdf file
netcdf_file = os.path.join(base_dir, "script_plume.nc")
scripting.remove_netcdf(netcdf_file)
model.outputters += NetCDFOutput(
netcdf_file,
which_data="most",
# output most of the data associated with the elements
output_timestep=timedelta(hours=2),
)
print "adding Horizontal and Vertical diffusion"
# Horizontal Diffusion
# model.movers += RandomMover(diffusion_coef=5)
# vertical diffusion (different above and below the mixed layer)
model.movers += RandomVerticalMover(
vertical_diffusion_coef_above_ml=5, vertical_diffusion_coef_below_ml=0.11, mixed_layer_depth=10
)
print "adding Rise Velocity"
# droplets rise as a function of their density and radius
model.movers += RiseVelocityMover()
print "adding a circular current and eastward current"
# This is .3 m/s south
model.movers += PyGridCurrentMover(current=vg, default_num_method="Trapezoid", extrapolate=True)
model.movers += SimpleMover(velocity=(0.0, -0.1, 0.0))
# Now to add in the TAMOC "spill"
print "Adding TAMOC spill"
model.spills += tamoc_spill.TamocSpill(
release_time=start_time,
start_position=(0, 0, 1000),
num_elements=1000,
end_release_time=start_time + timedelta(days=1),
name="TAMOC plume",
TAMOC_interval=None, # how often to re-run TAMOC
)
return model
示例2: make_model
# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
print 'initializing the model'
start_time = datetime(2006, 3, 31, 20, 0)
model = Model(start_time=start_time,
duration=timedelta(days=3), time_step=30 * 60,
uncertain=True)
print 'adding the map'
mapfile = get_datafile(os.path.join(base_dir, './coastSF.bna'))
model.map = MapFromBNA(mapfile, refloat_halflife=1) # seconds
renderer = Renderer(mapfile, images_dir, size=(800, 600),
draw_ontop='forecast')
renderer.viewport = ((-124.5, 37.), (-120.5, 39))
print 'adding outputters'
model.outputters += renderer
netcdf_file = os.path.join(base_dir, 'script_sf_bay.nc')
scripting.remove_netcdf(netcdf_file)
model.outputters += NetCDFOutput(netcdf_file, which_data='all')
print 'adding a spill'
spill = point_line_release_spill(num_elements=1000,
start_position=(-123.57152, 37.369436,
0.0),
release_time=start_time,
element_type=floating(windage_range=(0.01,
0.04)
)
)
model.spills += spill
# print 'adding a RandomMover:'
# r_mover = gnome.movers.RandomMover(diffusion_coef=50000)
# model.movers += r_mover
print 'adding a grid wind mover:'
wind_file = get_datafile(os.path.join(base_dir, r"./WindSpeedDirSubset.nc")
)
topology_file = get_datafile(os.path.join(base_dir,
r"./WindSpeedDirSubsetTop.dat"))
w_mover = GridWindMover(wind_file, topology_file)
#w_mover.uncertain_time_delay = 6
#w_mover.uncertain_duration = 6
w_mover.uncertain_speed_scale = 1
w_mover.uncertain_angle_scale = 0.2 # default is .4
w_mover.wind_scale = 2
model.movers += w_mover
return model
示例3: test_set_viewport
# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def test_set_viewport():
"""
tests various rendering, re-zooming, etc
NOTE: this will only test if the code crashes, you have to look
at the rendered images to see if it does the right thing
"""
input_file = os.path.join(data_dir, 'Star.bna')
r = Renderer(input_file, output_dir, image_size=(600, 600),
projection_class=GeoProjection)
# re-scale:
# should show upper right corner
r.viewport = ((-73, 40), (-70, 43))
r.draw_background()
r.save_background(os.path.join(output_dir, 'star_upper_right.png'))
# re-scale:
# should show lower right corner
r.viewport = ((-73, 37), (-70, 40))
r.draw_background()
r.save_background(os.path.join(output_dir, 'star_lower_right.png'))
# re-scale:
# should show lower left corner
r.viewport = ((-76, 37), (-73, 40))
r.draw_background()
r.save_background(os.path.join(output_dir, 'star_lower_left.png'))
# re-scale:
# should show upper left corner
r.viewport = ((-76, 40), (-73, 43))
r.draw_background()
r.save_background(os.path.join(output_dir, 'star_upper_left.png'))
示例4: make_model
# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
# create the maps:
print 'creating the maps'
mapfile = get_datafile(os.path.join(base_dir, 'SanJuanMap.bna'))
gnome_map = MapFromBNA(mapfile, refloat_halflife=1,
raster_size=1024 * 1024)
renderer = Renderer(mapfile,
images_dir,
size=(800, 800),
projection_class=GeoProjection)
renderer.viewport = ((-66.24, 18.39), (-66.1, 18.55))
print 'initializing the model'
start_time = datetime(2014, 9, 3, 13, 0)
# 15 minutes in seconds
# Default to now, rounded to the nearest hour
model = Model(time_step=900, start_time=start_time,
duration=timedelta(days=1),
map=gnome_map, uncertain=False)
print 'adding outputters'
model.outputters += renderer
netcdf_file = os.path.join(base_dir, 'script_san_juan.nc')
scripting.remove_netcdf(netcdf_file)
model.outputters += NetCDFOutput(netcdf_file, which_data='all')
print 'adding a RandomMover:'
model.movers += RandomMover(diffusion_coef=100000)
print 'adding a wind mover:'
series = np.zeros((2, ), dtype=datetime_value_2d)
series[0] = (start_time, (0, 270))
series[1] = (start_time + timedelta(hours=18), (0, 270))
wind = Wind(timeseries=series, units='m/s')
w_mover = WindMover(wind)
model.movers += w_mover
print 'adding a cats shio mover:'
# need to add the scale_factor for the tide heights file
curr_file = get_datafile(os.path.join(base_dir, 'EbbTides.cur'))
tide_file = get_datafile(os.path.join(base_dir, 'EbbTidesShioHt.txt'))
c_mover = CatsMover(curr_file, tide=Tide(tide_file, scale_factor=.15))
# this is the value in the file (default)
c_mover.scale_refpoint = (-66.116667, 18.458333)
c_mover.scale = True
c_mover.scale_value = 1.0
# c_mover.tide.scale_factor = 0.15
model.movers += c_mover
print 'adding a cats mover:'
curr_file = get_datafile(os.path.join(base_dir, 'Offshore.cur'))
c_mover = CatsMover(curr_file)
# this is the value in the file (default)
# c_mover.scale_refpoint = (-66.082836, 18.469334)
c_mover.scale_refpoint = (-66.084333333, 18.46966667)
c_mover.scale = True
c_mover.scale_value = 0.1
model.movers += c_mover
print 'adding a spill'
end_time = start_time + timedelta(hours=12)
spill = point_line_release_spill(num_elements=1000,
release_time=start_time,
start_position=(-66.16374,
18.468054, 0.0),
# start_position=(-66.129099,
# 18.465332, 0.0),
# end_release_time=end_time,
)
model.spills += spill
return model
示例5: make_model
# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
print 'initializing the model'
start_time = datetime(2004, 12, 31, 13, 0)
model = Model(start_time=start_time, duration=timedelta(days=3),
time_step=30 * 60, uncertain=False)
print 'adding the map'
model.map = GnomeMap()
# draw_ontop can be 'uncertain' or 'forecast'
# 'forecast' LEs are in black, and 'uncertain' are in red
# default is 'forecast' LEs draw on top
renderer = Renderer(images_dir=images_dir,
#size=(800, 600),
output_timestep=timedelta(hours=1),
draw_ontop='uncertain')
renderer.viewport = ((-76.5, 37.), (-75.8, 38.))
print 'adding outputters'
model.outputters += renderer
netcdf_file = os.path.join(base_dir, 'script_plume.nc')
scripting.remove_netcdf(netcdf_file)
model.outputters += NetCDFOutput(netcdf_file, which_data='most',
output_timestep=timedelta(hours=2))
print 'adding two spills'
# Break the spill into two spills, first with the larger droplets
# and second with the smaller droplets.
# Split the total spill volume (100 m^3) to have most
# in the larger droplet spill.
# Smaller droplets start at a lower depth than larger
wd = WeibullDistribution(alpha=1.8, lambda_=.00456,
min_=.0002) # 200 micron min
end_time = start_time + timedelta(hours=24)
spill = point_line_release_spill(num_elements=1000,
volume=90, # default volume_units=m^3
start_position=(-76.126872, 37.680952,
1700),
release_time=start_time,
end_release_time=end_time,
element_type=plume(distribution=wd))
model.spills += spill
wd = WeibullDistribution(alpha=1.8, lambda_=.00456,
max_=.0002) # 200 micron max
spill = point_line_release_spill(num_elements=1000, volume=10,
start_position=(-76.126872, 37.680952,
1800),
release_time=start_time,
element_type=plume(distribution=wd))
model.spills += spill
print 'adding a RandomMover:'
model.movers += RandomMover(diffusion_coef=50000)
print 'adding a RiseVelocityMover:'
model.movers += RiseVelocityMover()
print 'adding a RandomVerticalMover:'
model.movers += RandomVerticalMover(vertical_diffusion_coef_above_ml=5,
vertical_diffusion_coef_below_ml=.11,
mixed_layer_depth=10)
# print 'adding a wind mover:'
# series = np.zeros((2, ), dtype=gnome.basic_types.datetime_value_2d)
# series[0] = (start_time, (30, 90))
# series[1] = (start_time + timedelta(hours=23), (30, 90))
# wind = Wind(timeseries=series, units='knot')
#
# default is .4 radians
# w_mover = gnome.movers.WindMover(wind, uncertain_angle_scale=0)
#
# model.movers += w_mover
print 'adding a simple mover:'
s_mover = SimpleMover(velocity=(0.0, -.1, 0.0))
model.movers += s_mover
return model
示例6: make_model
# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
print 'initializing the model'
start_time = datetime(2014, 6, 9, 0, 0)
mapfile = get_datafile(os.path.join(base_dir, 'PassamaquoddyMap.bna'))
gnome_map = MapFromBNA(mapfile, refloat_halflife=1) # hours
# # the image output renderer
# global renderer
# one hour timestep
model = Model(start_time=start_time,
duration=timedelta(hours=24), time_step=360,
map=gnome_map, uncertain=False, cache_enabled=True)
print 'adding outputters'
renderer = Renderer(mapfile, images_dir, size=(800, 600),
# output_timestep=timedelta(hours=1),
draw_ontop='uncertain')
renderer.viewport = ((-67.15, 45.), (-66.9, 45.2))
model.outputters += renderer
netcdf_file = os.path.join(base_dir, 'script_passamaquoddy.nc')
scripting.remove_netcdf(netcdf_file)
model.outputters += NetCDFOutput(netcdf_file, which_data='all')
print 'adding a spill'
spill = point_line_release_spill(num_elements=1000,
start_position=(-66.991344, 45.059316,
0.0),
release_time=start_time)
model.spills += spill
print 'adding a RandomMover:'
model.movers += RandomMover(diffusion_coef=30000, uncertain_factor=2)
print 'adding a wind mover:'
series = np.zeros((5, ), dtype=datetime_value_2d)
series[0] = (start_time, (5, 90))
series[1] = (start_time + timedelta(hours=18), (5, 180))
series[2] = (start_time + timedelta(hours=30), (5, 135))
series[3] = (start_time + timedelta(hours=42), (5, 180))
series[4] = (start_time + timedelta(hours=54), (5, 225))
wind = Wind(timeseries=series, units='m/s')
model.movers += WindMover(wind)
print 'adding a current mover:'
curr_file = get_datafile(os.path.join(base_dir, 'PQBayCur.nc4'))
topology_file = get_datafile(os.path.join(base_dir, 'PassamaquoddyTOP.dat')
)
tide_file = get_datafile(os.path.join(base_dir, 'EstesHead.txt'))
cc_mover = CurrentCycleMover(curr_file, topology_file,
tide=Tide(tide_file))
model.movers += cc_mover
model.environment += cc_mover.tide
print 'viewport is:', [o.viewport
for o in model.outputters
if isinstance(o, Renderer)]
return model
示例7: make_model
# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
print 'initializing the model'
start_time = datetime(2013, 2, 13, 9, 0)
# 1/2 hr in seconds
model = Model(start_time=start_time,
duration=timedelta(days=2),
time_step=30 * 60,
uncertain=False)
print 'adding the map'
mapfile = get_datafile(os.path.join(base_dir, 'GuamMap.bna'))
model.map = MapFromBNA(mapfile, refloat_halflife=6) # hours
print 'adding outputters'
renderer = Renderer(mapfile, images_dir, image_size=(800, 600))
renderer.viewport = ((144.6, 13.4), (144.7, 13.5))
model.outputters += renderer
netcdf_file = os.path.join(base_dir, 'script_guam.nc')
scripting.remove_netcdf(netcdf_file)
model.outputters += NetCDFOutput(netcdf_file, which_data='all')
print 'adding a spill'
end_time = start_time + timedelta(hours=6)
spill = point_line_release_spill(num_elements=10,
start_position=(144.664166,
13.441944, 0.0),
release_time=start_time,
end_release_time=end_time)
model.spills += spill
print 'adding a RandomMover:'
model.movers += RandomMover(diffusion_coef=50000)
print 'adding a wind mover:'
series = np.zeros((4, ), dtype=datetime_value_2d)
series[0] = (start_time, (5, 135))
series[1] = (start_time + timedelta(hours=23), (5, 135))
series[2] = (start_time + timedelta(hours=25), (5, 0))
series[3] = (start_time + timedelta(hours=48), (5, 0))
wind = Wind(timeseries=series, units='knot')
w_mover = WindMover(wind)
model.movers += w_mover
model.environment += w_mover.wind
print 'adding a cats mover:'
curr_file = get_datafile(os.path.join(base_dir, 'OutsideWAC.cur'))
c_mover = CatsMover(curr_file)
c_mover.scale = True
c_mover.scale_refpoint = (144.601, 13.42)
c_mover.scale_value = .15
model.movers += c_mover
print 'adding a cats shio mover:'
curr_file = get_datafile(os.path.join(base_dir, 'WACFloodTide.cur'))
tide_file = get_datafile(os.path.join(base_dir, 'WACFTideShioHts.txt'))
c_mover = CatsMover(curr_file, tide=Tide(tide_file))
# this is different from the value in the file!
c_mover.scale_refpoint = (144.621667, 13.45)
c_mover.scale = True
c_mover.scale_value = 1
# will need the fScaleFactor for heights files
# c_mover.time_dep.scale_factor = 1.1864
c_mover.tide.scale_factor = 1.1864
model.movers += c_mover
model.environment += c_mover.tide
return model
示例8: make_model
# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
print 'initializing the model'
start_time = datetime(2004, 12, 31, 13, 0)
# 1 day of data in file
# 1/2 hr in seconds
model = Model(start_time=start_time,
duration=timedelta(days=1),
time_step=30 * 60,
uncertain=True)
mapfile = get_datafile(os.path.join(base_dir, 'ChesapeakeBay.bna'))
print 'adding the map'
model.map = MapFromBNA(mapfile, refloat_halflife=1) # seconds
# draw_ontop can be 'uncertain' or 'forecast'
# 'forecast' LEs are in black, and 'uncertain' are in red
# default is 'forecast' LEs draw on top
renderer = Renderer(mapfile, images_dir, size=(800, 600),
output_timestep=timedelta(hours=2),
draw_ontop='uncertain')
renderer.viewport = ((-76.5, 37.), (-75.8, 38.))
print 'adding outputters'
model.outputters += renderer
netcdf_file = os.path.join(base_dir, 'script_chesapeake_bay.nc')
scripting.remove_netcdf(netcdf_file)
model.outputters += NetCDFOutput(netcdf_file, which_data='all',
output_timestep=timedelta(hours=2))
print 'adding a spill'
# for now subsurface spill stays on initial layer
# - will need diffusion and rise velocity
# - wind doesn't act
# - start_position = (-76.126872, 37.680952, 5.0),
spill = point_line_release_spill(num_elements=1000,
start_position=(-76.126872,
37.680952,
0.0),
release_time=start_time)
model.spills += spill
print 'adding a RandomMover:'
model.movers += RandomMover(diffusion_coef=50000)
print 'adding a wind mover:'
series = np.zeros((2, ), dtype=datetime_value_2d)
series[0] = (start_time, (30, 0))
series[1] = (start_time + timedelta(hours=23), (30, 0))
wind = Wind(timeseries=series, units='knot')
# default is .4 radians
w_mover = WindMover(wind, uncertain_angle_scale=0)
model.movers += w_mover
print 'adding a current mover:'
curr_file = get_datafile(os.path.join(base_dir, 'ChesapeakeBay.nc'))
topology_file = get_datafile(os.path.join(base_dir, 'ChesapeakeBay.dat'))
# uncertain_time_delay in hours
c_mover = GridCurrentMover(curr_file, topology_file,
uncertain_time_delay=3)
c_mover.uncertain_along = 0 # default is .5
# c_mover.uncertain_cross = 0 # default is .25
model.movers += c_mover
return model
示例9: make_model
# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
print 'initializing the model'
# set up the modeling environment
start_time = datetime(2016, 9, 18, 1, 0)
model = Model(start_time=start_time,
duration=timedelta(days=3),
time_step=30 * 60,
uncertain=False)
print 'adding the map'
model.map = GnomeMap() # this is a "water world -- no land anywhere"
# renderere is only top-down view on 2d -- but it's something
renderer = Renderer(output_dir=images_dir,
size=(1024, 768),
output_timestep=timedelta(hours=1),
)
renderer.viewport = ((-87.095, 27.595), (-87.905, 28.405))
print 'adding outputters'
model.outputters += renderer
# Also going to write the results out to a netcdf file
netcdf_file = os.path.join(base_dir, 'gulf_tamoc.nc')
scripting.remove_netcdf(netcdf_file)
model.outputters += NetCDFOutput(netcdf_file,
which_data='most',
# output most of the data associated with the elements
output_timestep=timedelta(hours=2))
print "adding Horizontal and Vertical diffusion"
# Horizontal Diffusion
model.movers += RandomMover(diffusion_coef=100000)
# vertical diffusion (different above and below the mixed layer)
model.movers += RandomVerticalMover(vertical_diffusion_coef_above_ml=50,
vertical_diffusion_coef_below_ml=10,
horizontal_diffusion_coef_above_ml=100000,
horizontal_diffusion_coef_below_ml=100,
mixed_layer_depth=10)
print 'adding Rise Velocity'
# droplets rise as a function of their density and radius
model.movers += TamocRiseVelocityMover()
print 'adding the 3D current mover'
gc = GridCurrent.from_netCDF('HYCOM_3d.nc')
model.movers += GridCurrentMover('HYCOM_3d.nc')
# model.movers += SimpleMover(velocity=(0., 0, 0.))
# model.movers += constant_wind_mover(5, 315, units='knots')
# Wind from a buoy
w = Wind(filename='KIKT.osm')
model.movers += WindMover(w)
# Now to add in the TAMOC "spill"
print "Adding TAMOC spill"
model.spills += tamoc_spill.TamocSpill(release_time=start_time,
start_position=(-87.5, 28.0, 2000),
num_elements=30000,
end_release_time=start_time + timedelta(days=2),
name='TAMOC plume',
TAMOC_interval=None, # how often to re-run TAMOC
)
model.spills[0].data_sources['currents'] = gc
return model
示例10: make_model
# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
# create the maps:
start_time = datetime(2013, 3, 12, 10, 0)
# 15 minutes in seconds
# Default to now, rounded to the nearest hour
model = Model(time_step=60 * 60,
start_time=start_time,
duration=timedelta(days=1),
uncertain=False)
print 'adding outputters'
renderer = Renderer(output_dir=images_dir,
image_size=(800, 800),
# viewport=((-70.25, 41.75), # FIXME -- why doesn't this work?
# (-69.75, 42.25)),
projection_class=GeoProjection)
renderer.viewport = ((-70.25, 41.75),
(-69.75, 42.25))
model.outputters += renderer
netcdf_file = os.path.join(base_dir, 'surface_concentration.nc')
scripting.remove_netcdf(netcdf_file)
model.outputters += NetCDFOutput(netcdf_file, surface_conc='kde')
shape_file = os.path.join(base_dir, 'surface_concentration')
model.outputters += ShapeOutput(shape_file, surface_conc='kde')
shp_file = os.path.join(base_dir, 'surface_concentration')
scripting.remove_netcdf(shp_file + ".zip")
model.outputters += ShapeOutput(shp_file,
zip_output=False,
surface_conc="kde",
)
print 'adding a RandomMover:'
model.movers += RandomMover(diffusion_coef=100000)
print 'adding a wind mover:'
series = np.zeros((2, ), dtype=datetime_value_2d)
series[0] = (start_time, (5, 270))
series[1] = (start_time + timedelta(hours=25), (5, 270))
w_mover = WindMover(Wind(timeseries=series, units='m/s'))
model.movers += w_mover
model.environment += w_mover.wind
print 'adding a spill'
end_time = start_time + timedelta(hours=12)
spill = point_line_release_spill(num_elements=100,
amount=10000,
units='gal',
start_position=(-70.0, 42, 0.0),
release_time=start_time,
end_release_time=end_time,
)
model.spills += spill
return model
示例11: make_model
# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
print 'initializing the model'
# set up the modeling environment
start_time = datetime(2016, 9, 23, 0, 0)
model = Model(start_time=start_time,
duration=timedelta(days=2),
time_step=30 * 60,
uncertain=False)
print 'adding the map'
model.map = GnomeMap() # this is a "water world -- no land anywhere"
# renderere is only top-down view on 2d -- but it's something
renderer = Renderer(output_dir=images_dir,
image_size=(1024, 768),
output_timestep=timedelta(hours=1),
)
renderer.viewport = ((196.14, 71.89), (196.18, 71.93))
print 'adding outputters'
model.outputters += renderer
# Also going to write the results out to a netcdf file
netcdf_file = os.path.join(base_dir, 'script_arctic_plume.nc')
scripting.remove_netcdf(netcdf_file)
model.outputters += NetCDFOutput(netcdf_file,
which_data='most',
# output most of the data associated with the elements
output_timestep=timedelta(hours=2))
print "adding Horizontal and Vertical diffusion"
# Horizontal Diffusion
model.movers += RandomMover(diffusion_coef=500)
# vertical diffusion (different above and below the mixed layer)
model.movers += RandomVerticalMover(vertical_diffusion_coef_above_ml=5,
vertical_diffusion_coef_below_ml=.11,
mixed_layer_depth=10)
print 'adding Rise Velocity'
# droplets rise as a function of their density and radius
model.movers += TamocRiseVelocityMover()
print 'adding a circular current and eastward current'
fn = 'hycom_glb_regp17_2016092300_subset.nc'
fn_ice = 'hycom-cice_ARCu0.08_046_2016092300_subset.nc'
iconc = IceConcentration.from_netCDF(filename=fn_ice)
ivel = IceVelocity.from_netCDF(filename=fn_ice, grid = iconc.grid)
ic = IceAwareCurrent.from_netCDF(ice_concentration = iconc, ice_velocity= ivel, filename=fn)
model.movers += PyCurrentMover(current = ic)
model.movers += SimpleMover(velocity=(0., 0., 0.))
model.movers += constant_wind_mover(20, 315, units='knots')
# Now to add in the TAMOC "spill"
print "Adding TAMOC spill"
model.spills += tamoc_spill.TamocSpill(release_time=start_time,
start_position=(196.16, 71.91, 40.0),
num_elements=1000,
end_release_time=start_time + timedelta(days=1),
name='TAMOC plume',
TAMOC_interval=None, # how often to re-run TAMOC
)
model.spills[0].data_sources['currents'] = ic
return model