当前位置: 首页>>代码示例>>Python>>正文


Python Renderer.viewport方法代码示例

本文整理汇总了Python中gnome.outputters.Renderer.viewport方法的典型用法代码示例。如果您正苦于以下问题:Python Renderer.viewport方法的具体用法?Python Renderer.viewport怎么用?Python Renderer.viewport使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在gnome.outputters.Renderer的用法示例。


在下文中一共展示了Renderer.viewport方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: make_model

# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, "images")):
    print "initializing the model"

    # set up the modeling environment
    start_time = datetime(2004, 12, 31, 13, 0)
    model = Model(start_time=start_time, duration=timedelta(days=3), time_step=30 * 60, uncertain=False)

    print "adding the map"
    model.map = GnomeMap()  # this is a "water world -- no land anywhere"

    # renderere is only top-down view on 2d -- but it's something
    renderer = Renderer(output_dir=images_dir, size=(1024, 768), output_timestep=timedelta(hours=1))
    renderer.viewport = ((-0.15, -0.35), (0.15, 0.35))

    print "adding outputters"
    model.outputters += renderer

    # Also going to write the results out to a netcdf file
    netcdf_file = os.path.join(base_dir, "script_plume.nc")
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(
        netcdf_file,
        which_data="most",
        # output most of the data associated with the elements
        output_timestep=timedelta(hours=2),
    )

    print "adding Horizontal and Vertical diffusion"

    # Horizontal Diffusion
    # model.movers += RandomMover(diffusion_coef=5)
    # vertical diffusion (different above and below the mixed layer)
    model.movers += RandomVerticalMover(
        vertical_diffusion_coef_above_ml=5, vertical_diffusion_coef_below_ml=0.11, mixed_layer_depth=10
    )

    print "adding Rise Velocity"
    # droplets rise as a function of their density and radius
    model.movers += RiseVelocityMover()

    print "adding a circular current and eastward current"
    # This is .3 m/s south
    model.movers += PyGridCurrentMover(current=vg, default_num_method="Trapezoid", extrapolate=True)
    model.movers += SimpleMover(velocity=(0.0, -0.1, 0.0))

    # Now to add in the TAMOC "spill"
    print "Adding TAMOC spill"

    model.spills += tamoc_spill.TamocSpill(
        release_time=start_time,
        start_position=(0, 0, 1000),
        num_elements=1000,
        end_release_time=start_time + timedelta(days=1),
        name="TAMOC plume",
        TAMOC_interval=None,  # how often to re-run TAMOC
    )

    return model
开发者ID:NOAA-ORR-ERD,项目名称:PyGnome,代码行数:61,代码来源:script_tamoc.py

示例2: make_model

# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'
    start_time = datetime(2006, 3, 31, 20, 0)
    model = Model(start_time=start_time,
                  duration=timedelta(days=3), time_step=30 * 60,
                  uncertain=True)

    print 'adding the map'
    mapfile = get_datafile(os.path.join(base_dir, './coastSF.bna'))
    model.map = MapFromBNA(mapfile, refloat_halflife=1)  # seconds

    renderer = Renderer(mapfile, images_dir, size=(800, 600),
                        draw_ontop='forecast')
    renderer.viewport = ((-124.5, 37.), (-120.5, 39))

    print 'adding outputters'
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_sf_bay.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a spill'
    spill = point_line_release_spill(num_elements=1000,
                                     start_position=(-123.57152, 37.369436,
                                                     0.0),
                                     release_time=start_time,
                                     element_type=floating(windage_range=(0.01,
                                                                          0.04)
                                                           )
                                     )
    model.spills += spill

    # print 'adding a RandomMover:'
    # r_mover = gnome.movers.RandomMover(diffusion_coef=50000)
    # model.movers += r_mover

    print 'adding a grid wind mover:'
    wind_file = get_datafile(os.path.join(base_dir, r"./WindSpeedDirSubset.nc")
                             )
    topology_file = get_datafile(os.path.join(base_dir,
                                              r"./WindSpeedDirSubsetTop.dat"))
    w_mover = GridWindMover(wind_file, topology_file)

    #w_mover.uncertain_time_delay = 6
    #w_mover.uncertain_duration = 6
    w_mover.uncertain_speed_scale = 1
    w_mover.uncertain_angle_scale = 0.2  # default is .4
    w_mover.wind_scale = 2

    model.movers += w_mover

    return model
开发者ID:axiom-data-science,项目名称:PyGnome,代码行数:55,代码来源:script_sf_wind.py

示例3: test_set_viewport

# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def test_set_viewport():
    """
    tests various rendering, re-zooming, etc

    NOTE: this will only test if the code crashes, you have to look
          at the rendered images to see if it does the right thing
    """

    input_file = os.path.join(data_dir, 'Star.bna')
    r = Renderer(input_file, output_dir, image_size=(600, 600),
                 projection_class=GeoProjection)

    # re-scale:
    # should show upper right corner

    r.viewport = ((-73, 40), (-70, 43))
    r.draw_background()
    r.save_background(os.path.join(output_dir, 'star_upper_right.png'))

    # re-scale:
    # should show lower right corner

    r.viewport = ((-73, 37), (-70, 40))
    r.draw_background()
    r.save_background(os.path.join(output_dir, 'star_lower_right.png'))

    # re-scale:
    # should show lower left corner

    r.viewport = ((-76, 37), (-73, 40))
    r.draw_background()
    r.save_background(os.path.join(output_dir, 'star_lower_left.png'))

    # re-scale:
    # should show upper left corner

    r.viewport = ((-76, 40), (-73, 43))
    r.draw_background()
    r.save_background(os.path.join(output_dir, 'star_upper_left.png'))
开发者ID:JamesMakela-NOAA,项目名称:PyGnome,代码行数:41,代码来源:test_renderer.py

示例4: make_model

# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):

    # create the maps:

    print 'creating the maps'
    mapfile = get_datafile(os.path.join(base_dir, 'SanJuanMap.bna'))
    gnome_map = MapFromBNA(mapfile, refloat_halflife=1,
                           raster_size=1024 * 1024)

    renderer = Renderer(mapfile,
                        images_dir,
                        size=(800, 800),
                        projection_class=GeoProjection)

    renderer.viewport = ((-66.24, 18.39), (-66.1, 18.55))

    print 'initializing the model'
    start_time = datetime(2014, 9, 3, 13, 0)

    # 15 minutes in seconds
    # Default to now, rounded to the nearest hour
    model = Model(time_step=900, start_time=start_time,
                  duration=timedelta(days=1),
                  map=gnome_map, uncertain=False)

    print 'adding outputters'
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_san_juan.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=100000)

    print 'adding a wind mover:'

    series = np.zeros((2, ), dtype=datetime_value_2d)
    series[0] = (start_time, (0, 270))
    series[1] = (start_time + timedelta(hours=18), (0, 270))

    wind = Wind(timeseries=series, units='m/s')
    w_mover = WindMover(wind)
    model.movers += w_mover

    print 'adding a cats shio mover:'

    # need to add the scale_factor for the tide heights file
    curr_file = get_datafile(os.path.join(base_dir, 'EbbTides.cur'))
    tide_file = get_datafile(os.path.join(base_dir, 'EbbTidesShioHt.txt'))

    c_mover = CatsMover(curr_file, tide=Tide(tide_file, scale_factor=.15))

    # this is the value in the file (default)
    c_mover.scale_refpoint = (-66.116667, 18.458333)
    c_mover.scale = True
    c_mover.scale_value = 1.0
    # c_mover.tide.scale_factor = 0.15

    model.movers += c_mover

    print 'adding a cats mover:'

    curr_file = get_datafile(os.path.join(base_dir, 'Offshore.cur'))

    c_mover = CatsMover(curr_file)

    # this is the value in the file (default)
    # c_mover.scale_refpoint = (-66.082836, 18.469334)
    c_mover.scale_refpoint = (-66.084333333, 18.46966667)
    c_mover.scale = True
    c_mover.scale_value = 0.1

    model.movers += c_mover

    print 'adding a spill'

    end_time = start_time + timedelta(hours=12)
    spill = point_line_release_spill(num_elements=1000,
                                     release_time=start_time,
                                     start_position=(-66.16374,
                                                     18.468054, 0.0),
                                     # start_position=(-66.129099,
                                     #                 18.465332, 0.0),
                                     # end_release_time=end_time,
                                     )

    model.spills += spill

    return model
开发者ID:liuy0813,项目名称:PyGnome,代码行数:92,代码来源:script_san_juan.py

示例5: make_model

# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2004, 12, 31, 13, 0)
    model = Model(start_time=start_time, duration=timedelta(days=3),
                  time_step=30 * 60, uncertain=False)

    print 'adding the map'
    model.map = GnomeMap()

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(images_dir=images_dir,
                        #size=(800, 600),
                        output_timestep=timedelta(hours=1),
                        draw_ontop='uncertain')
    renderer.viewport = ((-76.5, 37.), (-75.8, 38.))

    print 'adding outputters'
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_plume.nc')
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(netcdf_file, which_data='most',
                                     output_timestep=timedelta(hours=2))

    print 'adding two spills'
    # Break the spill into two spills, first with the larger droplets
    # and second with the smaller droplets.
    # Split the total spill volume (100 m^3) to have most
    # in the larger droplet spill.
    # Smaller droplets start at a lower depth than larger

    wd = WeibullDistribution(alpha=1.8, lambda_=.00456,
                             min_=.0002)  # 200 micron min
    end_time = start_time + timedelta(hours=24)
    spill = point_line_release_spill(num_elements=1000,
                                     volume=90,  # default volume_units=m^3
                                     start_position=(-76.126872, 37.680952,
                                                     1700),
                                     release_time=start_time,
                                     end_release_time=end_time,
                                     element_type=plume(distribution=wd))
    model.spills += spill

    wd = WeibullDistribution(alpha=1.8, lambda_=.00456,
                             max_=.0002)  # 200 micron max
    spill = point_line_release_spill(num_elements=1000, volume=10,
                                     start_position=(-76.126872, 37.680952,
                                                     1800),
                                     release_time=start_time,
                                     element_type=plume(distribution=wd))
    model.spills += spill

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=50000)

    print 'adding a RiseVelocityMover:'
    model.movers += RiseVelocityMover()

    print 'adding a RandomVerticalMover:'
    model.movers += RandomVerticalMover(vertical_diffusion_coef_above_ml=5,
                                        vertical_diffusion_coef_below_ml=.11,
                                        mixed_layer_depth=10)

    # print 'adding a wind mover:'

    # series = np.zeros((2, ), dtype=gnome.basic_types.datetime_value_2d)
    # series[0] = (start_time, (30, 90))
    # series[1] = (start_time + timedelta(hours=23), (30, 90))

    # wind = Wind(timeseries=series, units='knot')
    #
    # default is .4 radians
    # w_mover = gnome.movers.WindMover(wind, uncertain_angle_scale=0)
    #
    # model.movers += w_mover

    print 'adding a simple mover:'
    s_mover = SimpleMover(velocity=(0.0, -.1, 0.0))
    model.movers += s_mover

    return model
开发者ID:JamesMakela-NOAA,项目名称:PyGnome,代码行数:87,代码来源:script_plume.py

示例6: make_model

# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2014, 6, 9, 0, 0)
    mapfile = get_datafile(os.path.join(base_dir, 'PassamaquoddyMap.bna'))

    gnome_map = MapFromBNA(mapfile, refloat_halflife=1)  # hours

    # # the image output renderer
    # global renderer

    # one hour timestep
    model = Model(start_time=start_time,
                  duration=timedelta(hours=24), time_step=360,
                  map=gnome_map, uncertain=False, cache_enabled=True)

    print 'adding outputters'
    renderer = Renderer(mapfile, images_dir, size=(800, 600),
                        # output_timestep=timedelta(hours=1),
                        draw_ontop='uncertain')
    renderer.viewport = ((-67.15, 45.), (-66.9, 45.2))

    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_passamaquoddy.nc')
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a spill'
    spill = point_line_release_spill(num_elements=1000,
                                     start_position=(-66.991344, 45.059316,
                                                     0.0),
                                     release_time=start_time)
    model.spills += spill

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=30000, uncertain_factor=2)

    print 'adding a wind mover:'
    series = np.zeros((5, ), dtype=datetime_value_2d)
    series[0] = (start_time, (5, 90))
    series[1] = (start_time + timedelta(hours=18), (5, 180))
    series[2] = (start_time + timedelta(hours=30), (5, 135))
    series[3] = (start_time + timedelta(hours=42), (5, 180))
    series[4] = (start_time + timedelta(hours=54), (5, 225))

    wind = Wind(timeseries=series, units='m/s')
    model.movers += WindMover(wind)

    print 'adding a current mover:'
    curr_file = get_datafile(os.path.join(base_dir, 'PQBayCur.nc4'))
    topology_file = get_datafile(os.path.join(base_dir, 'PassamaquoddyTOP.dat')
                                 )
    tide_file = get_datafile(os.path.join(base_dir, 'EstesHead.txt'))

    cc_mover = CurrentCycleMover(curr_file, topology_file,
                                 tide=Tide(tide_file))

    model.movers += cc_mover
    model.environment += cc_mover.tide

    print 'viewport is:', [o.viewport
                           for o in model.outputters
                           if isinstance(o, Renderer)]

    return model
开发者ID:liuy0813,项目名称:PyGnome,代码行数:69,代码来源:script_passamaquoddy.py

示例7: make_model

# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2013, 2, 13, 9, 0)

    # 1/2 hr in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(days=2),
                  time_step=30 * 60,
                  uncertain=False)

    print 'adding the map'
    mapfile = get_datafile(os.path.join(base_dir, 'GuamMap.bna'))
    model.map = MapFromBNA(mapfile, refloat_halflife=6)  # hours

    print 'adding outputters'
    renderer = Renderer(mapfile, images_dir, image_size=(800, 600))
    renderer.viewport = ((144.6, 13.4), (144.7, 13.5))
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_guam.nc')
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a spill'
    end_time = start_time + timedelta(hours=6)
    spill = point_line_release_spill(num_elements=10,
                                     start_position=(144.664166,
                                                     13.441944, 0.0),
                                     release_time=start_time,
                                     end_release_time=end_time)
    model.spills += spill

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=50000)

    print 'adding a wind mover:'
    series = np.zeros((4, ), dtype=datetime_value_2d)
    series[0] = (start_time, (5, 135))
    series[1] = (start_time + timedelta(hours=23), (5, 135))
    series[2] = (start_time + timedelta(hours=25), (5, 0))
    series[3] = (start_time + timedelta(hours=48), (5, 0))

    wind = Wind(timeseries=series, units='knot')
    w_mover = WindMover(wind)
    model.movers += w_mover
    model.environment += w_mover.wind

    print 'adding a cats mover:'
    curr_file = get_datafile(os.path.join(base_dir, 'OutsideWAC.cur'))
    c_mover = CatsMover(curr_file)

    c_mover.scale = True
    c_mover.scale_refpoint = (144.601, 13.42)
    c_mover.scale_value = .15

    model.movers += c_mover

    print 'adding a cats shio mover:'
    curr_file = get_datafile(os.path.join(base_dir, 'WACFloodTide.cur'))
    tide_file = get_datafile(os.path.join(base_dir, 'WACFTideShioHts.txt'))

    c_mover = CatsMover(curr_file, tide=Tide(tide_file))

    # this is different from the value in the file!
    c_mover.scale_refpoint = (144.621667, 13.45)

    c_mover.scale = True
    c_mover.scale_value = 1

    # will need the fScaleFactor for heights files
    # c_mover.time_dep.scale_factor = 1.1864
    c_mover.tide.scale_factor = 1.1864

    model.movers += c_mover
    model.environment += c_mover.tide

    return model
开发者ID:NOAA-ORR-ERD,项目名称:PyGnome,代码行数:81,代码来源:script_guam_get_data_test.py

示例8: make_model

# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2004, 12, 31, 13, 0)

    # 1 day of data in file
    # 1/2 hr in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(days=1),
                  time_step=30 * 60,
                  uncertain=True)

    mapfile = get_datafile(os.path.join(base_dir, 'ChesapeakeBay.bna'))

    print 'adding the map'
    model.map = MapFromBNA(mapfile, refloat_halflife=1)  # seconds

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(mapfile, images_dir, size=(800, 600),
                        output_timestep=timedelta(hours=2),
                        draw_ontop='uncertain')
    renderer.viewport = ((-76.5, 37.), (-75.8, 38.))

    print 'adding outputters'
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_chesapeake_bay.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file, which_data='all',
                                     output_timestep=timedelta(hours=2))

    print 'adding a spill'
    # for now subsurface spill stays on initial layer
    # - will need diffusion and rise velocity
    # - wind doesn't act
    # - start_position = (-76.126872, 37.680952, 5.0),
    spill = point_line_release_spill(num_elements=1000,
                                     start_position=(-76.126872,
                                                     37.680952,
                                                     0.0),
                                     release_time=start_time)

    model.spills += spill

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=50000)

    print 'adding a wind mover:'

    series = np.zeros((2, ), dtype=datetime_value_2d)
    series[0] = (start_time, (30, 0))
    series[1] = (start_time + timedelta(hours=23), (30, 0))

    wind = Wind(timeseries=series, units='knot')

    # default is .4 radians
    w_mover = WindMover(wind, uncertain_angle_scale=0)
    model.movers += w_mover

    print 'adding a current mover:'
    curr_file = get_datafile(os.path.join(base_dir, 'ChesapeakeBay.nc'))
    topology_file = get_datafile(os.path.join(base_dir, 'ChesapeakeBay.dat'))

    # uncertain_time_delay in hours
    c_mover = GridCurrentMover(curr_file, topology_file,
                               uncertain_time_delay=3)
    c_mover.uncertain_along = 0  # default is .5
    # c_mover.uncertain_cross = 0  # default is .25

    model.movers += c_mover

    return model
开发者ID:sandhujasmine,项目名称:PyGnome,代码行数:76,代码来源:script_chesapeake_bay.py

示例9: make_model

# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    # set up the modeling environment
    start_time = datetime(2016, 9, 18, 1, 0)
    model = Model(start_time=start_time,
                  duration=timedelta(days=3),
                  time_step=30 * 60,
                  uncertain=False)

    print 'adding the map'
    model.map = GnomeMap()  # this is a "water world -- no land anywhere"

    # renderere is only top-down view on 2d -- but it's something
    renderer = Renderer(output_dir=images_dir,
                        size=(1024, 768),
                        output_timestep=timedelta(hours=1),
                        )
    renderer.viewport = ((-87.095, 27.595), (-87.905, 28.405))

    print 'adding outputters'
    model.outputters += renderer

    # Also going to write the results out to a netcdf file
    netcdf_file = os.path.join(base_dir, 'gulf_tamoc.nc')
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(netcdf_file,
                                     which_data='most',
                                     # output most of the data associated with the elements
                                     output_timestep=timedelta(hours=2))

    print "adding Horizontal and Vertical diffusion"

    # Horizontal Diffusion
    model.movers += RandomMover(diffusion_coef=100000)
    # vertical diffusion (different above and below the mixed layer)
    model.movers += RandomVerticalMover(vertical_diffusion_coef_above_ml=50,
                                        vertical_diffusion_coef_below_ml=10,
                                        horizontal_diffusion_coef_above_ml=100000,
                                        horizontal_diffusion_coef_below_ml=100,
                                        mixed_layer_depth=10)

    print 'adding Rise Velocity'
    # droplets rise as a function of their density and radius
    model.movers += TamocRiseVelocityMover()

    print 'adding the 3D current mover'
    gc = GridCurrent.from_netCDF('HYCOM_3d.nc')

    model.movers += GridCurrentMover('HYCOM_3d.nc')
#    model.movers += SimpleMover(velocity=(0., 0, 0.))
#    model.movers += constant_wind_mover(5, 315, units='knots')

    # Wind from a buoy
    w = Wind(filename='KIKT.osm')
    model.movers += WindMover(w)


    # Now to add in the TAMOC "spill"
    print "Adding TAMOC spill"

    model.spills += tamoc_spill.TamocSpill(release_time=start_time,
                                        start_position=(-87.5, 28.0, 2000),
                                        num_elements=30000,
                                        end_release_time=start_time + timedelta(days=2),
                                        name='TAMOC plume',
                                        TAMOC_interval=None,  # how often to re-run TAMOC
                                        )

    model.spills[0].data_sources['currents'] = gc

    return model
开发者ID:,项目名称:,代码行数:75,代码来源:

示例10: make_model

# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):

    # create the maps:

    start_time = datetime(2013, 3, 12, 10, 0)

    # 15 minutes in seconds
    # Default to now, rounded to the nearest hour
    model = Model(time_step=60 * 60,
                  start_time=start_time,
                  duration=timedelta(days=1),
                  uncertain=False)

    print 'adding outputters'
    renderer = Renderer(output_dir=images_dir,
                        image_size=(800, 800),
                        # viewport=((-70.25, 41.75), # FIXME -- why doesn't this work?
                        #           (-69.75, 42.25)),
                        projection_class=GeoProjection)
    renderer.viewport = ((-70.25, 41.75),
                         (-69.75, 42.25))
    model.outputters += renderer
    netcdf_file = os.path.join(base_dir, 'surface_concentration.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file, surface_conc='kde')

    shape_file = os.path.join(base_dir, 'surface_concentration')
    model.outputters += ShapeOutput(shape_file, surface_conc='kde')

    shp_file = os.path.join(base_dir, 'surface_concentration')
    scripting.remove_netcdf(shp_file + ".zip")
    model.outputters += ShapeOutput(shp_file,
                                    zip_output=False,
                                    surface_conc="kde",
                                    )

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=100000)

    print 'adding a wind mover:'

    series = np.zeros((2, ), dtype=datetime_value_2d)
    series[0] = (start_time, (5, 270))
    series[1] = (start_time + timedelta(hours=25), (5, 270))

    w_mover = WindMover(Wind(timeseries=series, units='m/s'))
    model.movers += w_mover
    model.environment += w_mover.wind

    print 'adding a spill'

    end_time = start_time + timedelta(hours=12)
    spill = point_line_release_spill(num_elements=100,
                                     amount=10000,
                                     units='gal',
                                     start_position=(-70.0, 42, 0.0),
                                     release_time=start_time,
                                     end_release_time=end_time,
                                     )

    model.spills += spill

    return model
开发者ID:NOAA-ORR-ERD,项目名称:PyGnome,代码行数:65,代码来源:script_surface_concentration.py

示例11: make_model

# 需要导入模块: from gnome.outputters import Renderer [as 别名]
# 或者: from gnome.outputters.Renderer import viewport [as 别名]
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    # set up the modeling environment
    start_time = datetime(2016, 9, 23, 0, 0)
    model = Model(start_time=start_time,
                  duration=timedelta(days=2),
                  time_step=30 * 60,
                  uncertain=False)

    print 'adding the map'
    model.map = GnomeMap()  # this is a "water world -- no land anywhere"

    # renderere is only top-down view on 2d -- but it's something
    renderer = Renderer(output_dir=images_dir,
                        image_size=(1024, 768),
                        output_timestep=timedelta(hours=1),
                        )
    renderer.viewport = ((196.14, 71.89), (196.18, 71.93))

    print 'adding outputters'
    model.outputters += renderer

    # Also going to write the results out to a netcdf file
    netcdf_file = os.path.join(base_dir, 'script_arctic_plume.nc')
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(netcdf_file,
                                     which_data='most',
                                     # output most of the data associated with the elements
                                     output_timestep=timedelta(hours=2))

    print "adding Horizontal and Vertical diffusion"

    # Horizontal Diffusion
    model.movers += RandomMover(diffusion_coef=500)
    # vertical diffusion (different above and below the mixed layer)
    model.movers += RandomVerticalMover(vertical_diffusion_coef_above_ml=5,
                                        vertical_diffusion_coef_below_ml=.11,
                                        mixed_layer_depth=10)

    print 'adding Rise Velocity'
    # droplets rise as a function of their density and radius
    model.movers += TamocRiseVelocityMover()

    print 'adding a circular current and eastward current'
    fn = 'hycom_glb_regp17_2016092300_subset.nc'
    fn_ice = 'hycom-cice_ARCu0.08_046_2016092300_subset.nc'
    iconc = IceConcentration.from_netCDF(filename=fn_ice)
    ivel = IceVelocity.from_netCDF(filename=fn_ice, grid = iconc.grid)
    ic = IceAwareCurrent.from_netCDF(ice_concentration = iconc, ice_velocity= ivel, filename=fn)

    model.movers += PyCurrentMover(current = ic)
    model.movers += SimpleMover(velocity=(0., 0., 0.))
    model.movers += constant_wind_mover(20, 315, units='knots')

    # Now to add in the TAMOC "spill"
    print "Adding TAMOC spill"

    model.spills += tamoc_spill.TamocSpill(release_time=start_time,
                                        start_position=(196.16, 71.91, 40.0),
                                        num_elements=1000,
                                        end_release_time=start_time + timedelta(days=1),
                                        name='TAMOC plume',
                                        TAMOC_interval=None,  # how often to re-run TAMOC
                                        )

    model.spills[0].data_sources['currents'] = ic

    return model
开发者ID:NOAA-ORR-ERD,项目名称:PyGnome,代码行数:72,代码来源:script_arctic_tamoc.py


注:本文中的gnome.outputters.Renderer.viewport方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。