当前位置: 首页>>代码示例>>Python>>正文


Python UnscentedKalmanFilter.rts_smoother2方法代码示例

本文整理汇总了Python中filterpy.kalman.UnscentedKalmanFilter.rts_smoother2方法的典型用法代码示例。如果您正苦于以下问题:Python UnscentedKalmanFilter.rts_smoother2方法的具体用法?Python UnscentedKalmanFilter.rts_smoother2怎么用?Python UnscentedKalmanFilter.rts_smoother2使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在filterpy.kalman.UnscentedKalmanFilter的用法示例。


在下文中一共展示了UnscentedKalmanFilter.rts_smoother2方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: two_radar_constvel

# 需要导入模块: from filterpy.kalman import UnscentedKalmanFilter [as 别名]
# 或者: from filterpy.kalman.UnscentedKalmanFilter import rts_smoother2 [as 别名]
def two_radar_constvel():
    dt = 5

    def hx(x):
        r1, b1 = hx.R1.reading_of((x[0], x[2]))
        r2, b2 = hx.R2.reading_of((x[0], x[2]))

        return array([r1, b1, r2, b2])
        pass

    def fx(x, dt):
        x_est = x.copy()
        x_est[0] += x[1] * dt
        x_est[2] += x[3] * dt
        return x_est

    f = UKF(dim_x=4, dim_z=4, dt=dt, hx=hx, fx=fx, kappa=0)
    aircraft = ACSim((100, 100), (0.1 * dt, 0.02 * dt), 0.002)

    range_std = 0.2
    bearing_std = radians(0.5)

    R1 = RadarStation((0, 0), range_std, bearing_std)
    R2 = RadarStation((200, 0), range_std, bearing_std)

    hx.R1 = R1
    hx.R2 = R2

    f.x = array([100, 0.1, 100, 0.02])
    f.R = np.diag([range_std ** 2, bearing_std ** 2, range_std ** 2, bearing_std ** 2])
    q = Q_discrete_white_noise(2, var=0.002, dt=dt)
    # q = np.array([[0,0],[0,0.0002]])
    f.Q[0:2, 0:2] = q
    f.Q[2:4, 2:4] = q
    f.P = np.diag([0.1, 0.01, 0.1, 0.01])

    track = []
    zs = []

    for i in range(int(300 / dt)):

        pos = aircraft.update()

        r1, b1 = R1.noisy_reading(pos)
        r2, b2 = R2.noisy_reading(pos)

        z = np.array([r1, b1, r2, b2])
        zs.append(z)
        track.append(pos.copy())

    zs = asarray(zs)

    xs, Ps, Pxz = f.batch_filter(zs)
    ms, _, _ = f.rts_smoother2(xs, Ps, Pxz)

    track = asarray(track)
    time = np.arange(0, len(xs) * dt, dt)

    plt.figure()
    plt.subplot(411)
    plt.plot(time, track[:, 0])
    plt.plot(time, xs[:, 0])
    plt.legend(loc=4)
    plt.xlabel("time (sec)")
    plt.ylabel("x position (m)")

    plt.subplot(412)
    plt.plot(time, track[:, 1])
    plt.plot(time, xs[:, 2])
    plt.legend(loc=4)
    plt.xlabel("time (sec)")
    plt.ylabel("y position (m)")

    plt.subplot(413)
    plt.plot(time, xs[:, 1])
    plt.plot(time, ms[:, 1])
    plt.legend(loc=4)
    plt.ylim([0, 0.2])
    plt.xlabel("time (sec)")
    plt.ylabel("x velocity (m/s)")

    plt.subplot(414)
    plt.plot(time, xs[:, 3])
    plt.plot(time, ms[:, 3])
    plt.ylabel("y velocity (m/s)")
    plt.legend(loc=4)
    plt.xlabel("time (sec)")

    plt.show()
开发者ID:weiweikong,项目名称:Kalman-and-Bayesian-Filters-in-Python,代码行数:91,代码来源:two_radar.py


注:本文中的filterpy.kalman.UnscentedKalmanFilter.rts_smoother2方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。