本文整理汇总了Python中filterpy.kalman.UnscentedKalmanFilter.Q[0:2,0:2]方法的典型用法代码示例。如果您正苦于以下问题:Python UnscentedKalmanFilter.Q[0:2,0:2]方法的具体用法?Python UnscentedKalmanFilter.Q[0:2,0:2]怎么用?Python UnscentedKalmanFilter.Q[0:2,0:2]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类filterpy.kalman.UnscentedKalmanFilter
的用法示例。
在下文中一共展示了UnscentedKalmanFilter.Q[0:2,0:2]方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: h_cv
# 需要导入模块: from filterpy.kalman import UnscentedKalmanFilter [as 别名]
# 或者: from filterpy.kalman.UnscentedKalmanFilter import Q[0:2,0:2] [as 别名]
def h_cv(x):
return np.array([x[0], x[2]])
def e(x):
res = []
for n in range(x.shape[0]):
res.append(np.sqrt(x[n][0]**2+x[n][2]**2))
return res
dt = 1.0
random.seed(1234)
ukf = UnscentedKalmanFilter(dim_x=4, dim_z=2, fx=f_cv, hx=h_cv, dt=dt, kappa=0)
ukf.x = np.array([100., 0., 0., 0.])
ukf.R = np.diag([25, 25])
ukf.Q[0:2,0:2] = Q_discrete_white_noise(2, dt, var=0.04)
ukf.Q[2:4,2:4] = Q_discrete_white_noise(2, dt, var=0.04)
ckf = CubatureKalmanFilter(dim_x=4, dim_z=2, fx=f_cv, hx=h_cv, dt=dt)
ckf.x = np.array([100., 0., 0., 0.])
ckf.R = np.diag([25, 25])
ckf.Q[0:2,0:2] = Q_discrete_white_noise(2, dt, var=0.04)
ckf.Q[2:4,2:4] = Q_discrete_white_noise(2, dt, var=0.04)
uxs = []
pxs = []
zs = []
txs = []
cxs = []
radius = 100
delta = 2*np.pi/360*5
示例2: linear_filter
# 需要导入模块: from filterpy.kalman import UnscentedKalmanFilter [as 别名]
# 或者: from filterpy.kalman.UnscentedKalmanFilter import Q[0:2,0:2] [as 别名]
def linear_filter(measurements):
dt = 1.0
# x = [x, x', y, y']
x = np.array([measurements[0][0], 0., measurements[0][1], 0.])
H = np.array([[1., 0., 1., 0.]])
# Info available http://nbviewer.ipython.org/github/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/05_Multivariate_Kalman_Filters.ipynb
sigmas = MerweScaledSigmaPoints(n=4, alpha=0.3, beta=2., kappa=-3.)
bot_filter = UKF(dim_x=4, dim_z=2, fx=f_linear, hx=h_linear, dt=dt, points=sigmas)
bot_filter.x = np.array([measurements[0][0], 0., measurements[0][1], 0.])
#bot_filter.F = F
bot_filter.H = np.asarray(H)
#bot_filter.Q = Q
bot_filter.Q[0:2, 0:2] = Q_discrete_white_noise(2, dt=1, var=0.1)
bot_filter.Q[2:4, 2:4] = Q_discrete_white_noise(2, dt=1, var=0.1)
bot_filter.P *= 10
bot_filter.R = np.diag([0.0001, 0.0001])
observable_meas = measurements[0:len(measurements)-60]
pos, cov = [], []
for z in observable_meas:
pos.append(bot_filter.x)
cov.append(bot_filter.P)
bot_filter.predict()
bot_filter.update(z)
for i in range(0,60):
bot_filter.predict()
pos.append(bot_filter.x)
return pos
示例3: two_radar_constvel
# 需要导入模块: from filterpy.kalman import UnscentedKalmanFilter [as 别名]
# 或者: from filterpy.kalman.UnscentedKalmanFilter import Q[0:2,0:2] [as 别名]
def two_radar_constvel():
dt = 5
def hx(x):
r1, b1 = hx.R1.reading_of((x[0], x[2]))
r2, b2 = hx.R2.reading_of((x[0], x[2]))
return array([r1, b1, r2, b2])
pass
def fx(x, dt):
x_est = x.copy()
x_est[0] += x[1] * dt
x_est[2] += x[3] * dt
return x_est
f = UKF(dim_x=4, dim_z=4, dt=dt, hx=hx, fx=fx, kappa=0)
aircraft = ACSim((100, 100), (0.1 * dt, 0.02 * dt), 0.002)
range_std = 0.2
bearing_std = radians(0.5)
R1 = RadarStation((0, 0), range_std, bearing_std)
R2 = RadarStation((200, 0), range_std, bearing_std)
hx.R1 = R1
hx.R2 = R2
f.x = array([100, 0.1, 100, 0.02])
f.R = np.diag([range_std ** 2, bearing_std ** 2, range_std ** 2, bearing_std ** 2])
q = Q_discrete_white_noise(2, var=0.002, dt=dt)
# q = np.array([[0,0],[0,0.0002]])
f.Q[0:2, 0:2] = q
f.Q[2:4, 2:4] = q
f.P = np.diag([0.1, 0.01, 0.1, 0.01])
track = []
zs = []
for i in range(int(300 / dt)):
pos = aircraft.update()
r1, b1 = R1.noisy_reading(pos)
r2, b2 = R2.noisy_reading(pos)
z = np.array([r1, b1, r2, b2])
zs.append(z)
track.append(pos.copy())
zs = asarray(zs)
xs, Ps, Pxz = f.batch_filter(zs)
ms, _, _ = f.rts_smoother2(xs, Ps, Pxz)
track = asarray(track)
time = np.arange(0, len(xs) * dt, dt)
plt.figure()
plt.subplot(411)
plt.plot(time, track[:, 0])
plt.plot(time, xs[:, 0])
plt.legend(loc=4)
plt.xlabel("time (sec)")
plt.ylabel("x position (m)")
plt.subplot(412)
plt.plot(time, track[:, 1])
plt.plot(time, xs[:, 2])
plt.legend(loc=4)
plt.xlabel("time (sec)")
plt.ylabel("y position (m)")
plt.subplot(413)
plt.plot(time, xs[:, 1])
plt.plot(time, ms[:, 1])
plt.legend(loc=4)
plt.ylim([0, 0.2])
plt.xlabel("time (sec)")
plt.ylabel("x velocity (m/s)")
plt.subplot(414)
plt.plot(time, xs[:, 3])
plt.plot(time, ms[:, 3])
plt.ylabel("y velocity (m/s)")
plt.legend(loc=4)
plt.xlabel("time (sec)")
plt.show()
示例4: two_radar_constalt
# 需要导入模块: from filterpy.kalman import UnscentedKalmanFilter [as 别名]
# 或者: from filterpy.kalman.UnscentedKalmanFilter import Q[0:2,0:2] [as 别名]
def two_radar_constalt():
dt = 0.05
def hx(x):
r1, b1 = hx.R1.reading_of((x[0], x[2]))
r2, b2 = hx.R2.reading_of((x[0], x[2]))
return array([r1, b1, r2, b2])
pass
def fx(x, dt):
x_est = x.copy()
x_est[0] += x[1] * dt
return x_est
vx = 100 / 1000 # meters/sec
vz = 0.0
f = UKF(dim_x=3, dim_z=4, dt=dt, hx=hx, fx=fx, kappa=0)
aircraft = ACSim((0, 1), (vx * dt, vz * dt), 0.00)
range_std = 1 / 1000.0
bearing_std = 1 / 1000000.0
R1 = RadarStation((0, 0), range_std, bearing_std)
R2 = RadarStation((60, 0), range_std, bearing_std)
hx.R1 = R1
hx.R2 = R2
f.x = array([aircraft.pos[0], vx, aircraft.pos[1]])
f.R = np.diag([range_std ** 2, bearing_std ** 2, range_std ** 2, bearing_std ** 2])
q = Q_discrete_white_noise(2, var=0.0002, dt=dt)
# q = np.array([[0,0],[0,0.0002]])
f.Q[0:2, 0:2] = q
f.Q[2, 2] = 0.0002
f.P = np.diag([0.1, 0.01, 0.1]) * 0.1
track = []
zs = []
for i in range(int(500 / dt)):
pos = aircraft.update()
r1, b1 = R1.noisy_reading(pos)
r2, b2 = R2.noisy_reading(pos)
z = np.array([r1, b1, r2, b2])
zs.append(z)
track.append(pos.copy())
zs = asarray(zs)
xs, Ps = f.batch_filter(zs)
ms, _, _ = f.rts_smoother(xs, Ps)
track = asarray(track)
time = np.arange(0, len(xs) * dt, dt)
plt.figure()
plt.subplot(311)
plt.plot(time, track[:, 0])
plt.plot(time, xs[:, 0])
plt.legend(loc=4)
plt.xlabel("time (sec)")
plt.ylabel("x position (m)")
plt.subplot(312)
plt.plot(time, xs[:, 1] * 1000, label="UKF")
plt.plot(time, ms[:, 1] * 1000, label="RTS")
plt.legend(loc=4)
plt.xlabel("time (sec)")
plt.ylabel("velocity (m/s)")
plt.subplot(313)
plt.plot(time, xs[:, 2] * 1000, label="UKF")
plt.plot(time, ms[:, 2] * 1000, label="RTS")
plt.legend(loc=4)
plt.xlabel("time (sec)")
plt.ylabel("altitude (m)")
plt.ylim([900, 1100])
for z in zs[:10]:
p = R1.z_to_x(z[0], z[1])
# plt.scatter(p[0], p[1], marker='+', c='k')
p = R2.z_to_x(z[2], z[3])
# plt.scatter(p[0], p[1], marker='+', c='b')
plt.show()