当前位置: 首页>>代码示例>>Python>>正文


Python UnscentedKalmanFilter.H方法代码示例

本文整理汇总了Python中filterpy.kalman.UnscentedKalmanFilter.H方法的典型用法代码示例。如果您正苦于以下问题:Python UnscentedKalmanFilter.H方法的具体用法?Python UnscentedKalmanFilter.H怎么用?Python UnscentedKalmanFilter.H使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在filterpy.kalman.UnscentedKalmanFilter的用法示例。


在下文中一共展示了UnscentedKalmanFilter.H方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: filter

# 需要导入模块: from filterpy.kalman import UnscentedKalmanFilter [as 别名]
# 或者: from filterpy.kalman.UnscentedKalmanFilter import H [as 别名]
def filter(measurements):

    dt = 0.1

    # x = [x, x', x'' y, y', y'']
    x = np.array([measurements[0][0], 0., 0., measurements[0][1], 0., 0.])

    G = np.array([[0.19*(dt**2)],
                  [dt],
                  [1.],
                  [0.19*(dt**2)],
                  [dt],
                  [1.]])
     
    Q = G*G.T*0.1**2

    # Info available http://nbviewer.ipython.org/github/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/05_Multivariate_Kalman_Filters.ipynb
    sigmas = MerweScaledSigmaPoints(n=6, alpha=1., beta=2., kappa=-3.)
    
    bot_filter = UKF(dim_x=6, dim_z=2, fx=f_cv, hx=h_cv, dt=dt, points=sigmas)
    bot_filter.x = np.array([measurements[0][0], 0., 0, measurements[0][1], 0., 0.])
    #bot_filter.F = F
    bot_filter.H = np.array([[1., 0., 0., 1., 0., 0.]])
    #bot_filter.Q = Q
    bot_filter.Q[0:3, 0:3] = Q_discrete_white_noise(3, dt=1, var=0.0002)
    bot_filter.Q[3:6, 3:6] = Q_discrete_white_noise(3, dt=1, var=0.0002)
    bot_filter.P *= 500
    bot_filter.R = np.diag([0.0001, 0.0001])

    observable_meas = measurements[0:len(measurements)-60]

    pos, cov = [], []
    for z in observable_meas:
        pos.append(bot_filter.x)
        cov.append(bot_filter.P)
        
        bot_filter.predict()
        bot_filter.update(z)

    for i in range(0,60):
        bot_filter.predict()
        pos.append(bot_filter.x)
        
    return pos
开发者ID:nickrobinson,项目名称:CS8803_finalproject,代码行数:46,代码来源:kalman_util.py

示例2: linear_filter

# 需要导入模块: from filterpy.kalman import UnscentedKalmanFilter [as 别名]
# 或者: from filterpy.kalman.UnscentedKalmanFilter import H [as 别名]
def linear_filter(measurements):
    
    dt = 1.0

    # x = [x, x', y, y']
    x = np.array([measurements[0][0], 0., measurements[0][1], 0.])

    H = np.array([[1., 0., 1., 0.]])

    # Info available http://nbviewer.ipython.org/github/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/05_Multivariate_Kalman_Filters.ipynb
    sigmas = MerweScaledSigmaPoints(n=4, alpha=0.3, beta=2., kappa=-3.)
    
    bot_filter = UKF(dim_x=4, dim_z=2, fx=f_linear, hx=h_linear, dt=dt, points=sigmas)
    bot_filter.x = np.array([measurements[0][0], 0., measurements[0][1], 0.])
    #bot_filter.F = F
    bot_filter.H = np.asarray(H)
    #bot_filter.Q = Q
    bot_filter.Q[0:2, 0:2] = Q_discrete_white_noise(2, dt=1, var=0.1)
    bot_filter.Q[2:4, 2:4] = Q_discrete_white_noise(2, dt=1, var=0.1)
    bot_filter.P *= 10
    bot_filter.R = np.diag([0.0001, 0.0001])

    observable_meas = measurements[0:len(measurements)-60]

    pos, cov = [], []
    for z in observable_meas:
        pos.append(bot_filter.x)
        cov.append(bot_filter.P)
        
        bot_filter.predict()
        bot_filter.update(z)

    for i in range(0,60):
        bot_filter.predict()
        pos.append(bot_filter.x)
        
    return pos
开发者ID:nickrobinson,项目名称:CS8803_finalproject,代码行数:39,代码来源:kalman_util.py


注:本文中的filterpy.kalman.UnscentedKalmanFilter.H方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。