本文整理汇总了Python中fbprophet.Prophet.make_all_seasonality_features方法的典型用法代码示例。如果您正苦于以下问题:Python Prophet.make_all_seasonality_features方法的具体用法?Python Prophet.make_all_seasonality_features怎么用?Python Prophet.make_all_seasonality_features使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类fbprophet.Prophet
的用法示例。
在下文中一共展示了Prophet.make_all_seasonality_features方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_seasonality_modes
# 需要导入模块: from fbprophet import Prophet [as 别名]
# 或者: from fbprophet.Prophet import make_all_seasonality_features [as 别名]
def test_seasonality_modes(self):
# Model with holidays, seasonalities, and extra regressors
holidays = pd.DataFrame({
'ds': pd.to_datetime(['2016-12-25']),
'holiday': ['xmas'],
'lower_window': [-1],
'upper_window': [0],
})
m = Prophet(seasonality_mode='multiplicative', holidays=holidays)
m.add_seasonality('monthly', period=30, mode='additive', fourier_order=3)
m.add_regressor('binary_feature', mode='additive')
m.add_regressor('numeric_feature')
# Construct seasonal features
df = DATA.copy()
df['binary_feature'] = [0] * 255 + [1] * 255
df['numeric_feature'] = range(510)
df = m.setup_dataframe(df, initialize_scales=True)
m.history = df.copy()
m.set_auto_seasonalities()
seasonal_features, prior_scales, component_cols, modes = (
m.make_all_seasonality_features(df))
self.assertEqual(sum(component_cols['additive_terms']), 7)
self.assertEqual(sum(component_cols['multiplicative_terms']), 29)
self.assertEqual(
set(modes['additive']),
{'monthly', 'binary_feature', 'additive_terms',
'extra_regressors_additive'},
)
self.assertEqual(
set(modes['multiplicative']),
{'weekly', 'yearly', 'xmas', 'numeric_feature',
'multiplicative_terms', 'extra_regressors_multiplicative',
'holidays',
},
)
示例2: test_custom_seasonality
# 需要导入模块: from fbprophet import Prophet [as 别名]
# 或者: from fbprophet.Prophet import make_all_seasonality_features [as 别名]
def test_custom_seasonality(self):
holidays = pd.DataFrame({
'ds': pd.to_datetime(['2017-01-02']),
'holiday': ['special_day'],
'prior_scale': [4.],
})
m = Prophet(holidays=holidays)
m.add_seasonality(name='monthly', period=30, fourier_order=5,
prior_scale=2.)
self.assertEqual(
m.seasonalities['monthly'],
{
'period': 30,
'fourier_order': 5,
'prior_scale': 2.,
'mode': 'additive',
},
)
with self.assertRaises(ValueError):
m.add_seasonality(name='special_day', period=30, fourier_order=5)
with self.assertRaises(ValueError):
m.add_seasonality(name='trend', period=30, fourier_order=5)
m.add_seasonality(name='weekly', period=30, fourier_order=5)
# Test priors
m = Prophet(
holidays=holidays, yearly_seasonality=False,
seasonality_mode='multiplicative',
)
m.add_seasonality(name='monthly', period=30, fourier_order=5,
prior_scale=2., mode='additive')
m.fit(DATA.copy())
self.assertEqual(m.seasonalities['monthly']['mode'], 'additive')
self.assertEqual(m.seasonalities['weekly']['mode'], 'multiplicative')
seasonal_features, prior_scales, component_cols, modes = (
m.make_all_seasonality_features(m.history)
)
self.assertEqual(sum(component_cols['monthly']), 10)
self.assertEqual(sum(component_cols['special_day']), 1)
self.assertEqual(sum(component_cols['weekly']), 6)
self.assertEqual(sum(component_cols['additive_terms']), 10)
self.assertEqual(sum(component_cols['multiplicative_terms']), 7)
if seasonal_features.columns[0] == 'monthly_delim_1':
true = [2.] * 10 + [10.] * 6 + [4.]
self.assertEqual(sum(component_cols['monthly'][:10]), 10)
self.assertEqual(sum(component_cols['weekly'][10:16]), 6)
else:
true = [10.] * 6 + [2.] * 10 + [4.]
self.assertEqual(sum(component_cols['weekly'][:6]), 6)
self.assertEqual(sum(component_cols['monthly'][6:16]), 10)
self.assertEqual(prior_scales, true)
示例3: test_added_regressors
# 需要导入模块: from fbprophet import Prophet [as 别名]
# 或者: from fbprophet.Prophet import make_all_seasonality_features [as 别名]
def test_added_regressors(self):
m = Prophet()
m.add_regressor('binary_feature', prior_scale=0.2)
m.add_regressor('numeric_feature', prior_scale=0.5)
m.add_regressor(
'numeric_feature2', prior_scale=0.5, mode='multiplicative'
)
m.add_regressor('binary_feature2', standardize=True)
df = DATA.copy()
df['binary_feature'] = [0] * 255 + [1] * 255
df['numeric_feature'] = range(510)
df['numeric_feature2'] = range(510)
with self.assertRaises(ValueError):
# Require all regressors in df
m.fit(df)
df['binary_feature2'] = [1] * 100 + [0] * 410
m.fit(df)
# Check that standardizations are correctly set
self.assertEqual(
m.extra_regressors['binary_feature'],
{
'prior_scale': 0.2,
'mu': 0,
'std': 1,
'standardize': 'auto',
'mode': 'additive',
},
)
self.assertEqual(
m.extra_regressors['numeric_feature']['prior_scale'], 0.5)
self.assertEqual(
m.extra_regressors['numeric_feature']['mu'], 254.5)
self.assertAlmostEqual(
m.extra_regressors['numeric_feature']['std'], 147.368585, places=5)
self.assertEqual(
m.extra_regressors['numeric_feature2']['mode'], 'multiplicative')
self.assertEqual(
m.extra_regressors['binary_feature2']['prior_scale'], 10.)
self.assertAlmostEqual(
m.extra_regressors['binary_feature2']['mu'], 0.1960784, places=5)
self.assertAlmostEqual(
m.extra_regressors['binary_feature2']['std'], 0.3974183, places=5)
# Check that standardization is done correctly
df2 = m.setup_dataframe(df.copy())
self.assertEqual(df2['binary_feature'][0], 0)
self.assertAlmostEqual(df2['numeric_feature'][0], -1.726962, places=4)
self.assertAlmostEqual(df2['binary_feature2'][0], 2.022859, places=4)
# Check that feature matrix and prior scales are correctly constructed
seasonal_features, prior_scales, component_cols, modes = (
m.make_all_seasonality_features(df2)
)
self.assertEqual(seasonal_features.shape[1], 30)
names = ['binary_feature', 'numeric_feature', 'binary_feature2']
true_priors = [0.2, 0.5, 10.]
for i, name in enumerate(names):
self.assertIn(name, seasonal_features)
self.assertEqual(sum(component_cols[name]), 1)
self.assertEqual(
sum(np.array(prior_scales) * component_cols[name]),
true_priors[i],
)
# Check that forecast components are reasonable
future = pd.DataFrame({
'ds': ['2014-06-01'],
'binary_feature': [0],
'numeric_feature': [10],
'numeric_feature2': [10],
})
with self.assertRaises(ValueError):
m.predict(future)
future['binary_feature2'] = 0
fcst = m.predict(future)
self.assertEqual(fcst.shape[1], 37)
self.assertEqual(fcst['binary_feature'][0], 0)
self.assertAlmostEqual(
fcst['extra_regressors_additive'][0],
fcst['numeric_feature'][0] + fcst['binary_feature2'][0],
)
self.assertAlmostEqual(
fcst['extra_regressors_multiplicative'][0],
fcst['numeric_feature2'][0],
)
self.assertAlmostEqual(
fcst['additive_terms'][0],
fcst['yearly'][0] + fcst['weekly'][0]
+ fcst['extra_regressors_additive'][0],
)
self.assertAlmostEqual(
fcst['multiplicative_terms'][0],
fcst['extra_regressors_multiplicative'][0],
)
self.assertAlmostEqual(
fcst['yhat'][0],
fcst['trend'][0] * (1 + fcst['multiplicative_terms'][0])
+ fcst['additive_terms'][0],
)
# Check works if constant extra regressor at 0
df['constant_feature'] = 0
m = Prophet()
m.add_regressor('constant_feature')
#.........这里部分代码省略.........