当前位置: 首页>>代码示例>>Python>>正文


Python Prophet.add_seasonality方法代码示例

本文整理汇总了Python中fbprophet.Prophet.add_seasonality方法的典型用法代码示例。如果您正苦于以下问题:Python Prophet.add_seasonality方法的具体用法?Python Prophet.add_seasonality怎么用?Python Prophet.add_seasonality使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在fbprophet.Prophet的用法示例。


在下文中一共展示了Prophet.add_seasonality方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_seasonality_modes

# 需要导入模块: from fbprophet import Prophet [as 别名]
# 或者: from fbprophet.Prophet import add_seasonality [as 别名]
 def test_seasonality_modes(self):
     # Model with holidays, seasonalities, and extra regressors
     holidays = pd.DataFrame({
         'ds': pd.to_datetime(['2016-12-25']),
         'holiday': ['xmas'],
         'lower_window': [-1],
         'upper_window': [0],
     })
     m = Prophet(seasonality_mode='multiplicative', holidays=holidays)
     m.add_seasonality('monthly', period=30, mode='additive', fourier_order=3)
     m.add_regressor('binary_feature', mode='additive')
     m.add_regressor('numeric_feature')
     # Construct seasonal features
     df = DATA.copy()
     df['binary_feature'] = [0] * 255 + [1] * 255
     df['numeric_feature'] = range(510)
     df = m.setup_dataframe(df, initialize_scales=True)
     m.history = df.copy()
     m.set_auto_seasonalities()
     seasonal_features, prior_scales, component_cols, modes = (
         m.make_all_seasonality_features(df))
     self.assertEqual(sum(component_cols['additive_terms']), 7)
     self.assertEqual(sum(component_cols['multiplicative_terms']), 29)
     self.assertEqual(
         set(modes['additive']),
         {'monthly', 'binary_feature', 'additive_terms',
          'extra_regressors_additive'},
     )
     self.assertEqual(
         set(modes['multiplicative']),
         {'weekly', 'yearly', 'xmas', 'numeric_feature',
          'multiplicative_terms', 'extra_regressors_multiplicative',
          'holidays',
         },
     )
开发者ID:cathleenyuan,项目名称:prophet,代码行数:37,代码来源:test_prophet.py

示例2: test_custom_seasonality

# 需要导入模块: from fbprophet import Prophet [as 别名]
# 或者: from fbprophet.Prophet import add_seasonality [as 别名]
 def test_custom_seasonality(self):
     holidays = pd.DataFrame({
         'ds': pd.to_datetime(['2017-01-02']),
         'holiday': ['special_day'],
         'prior_scale': [4.],
     })
     m = Prophet(holidays=holidays)
     m.add_seasonality(name='monthly', period=30, fourier_order=5,
                       prior_scale=2.)
     self.assertEqual(
         m.seasonalities['monthly'],
         {
             'period': 30,
             'fourier_order': 5,
             'prior_scale': 2.,
             'mode': 'additive',
         },
     )
     with self.assertRaises(ValueError):
         m.add_seasonality(name='special_day', period=30, fourier_order=5)
     with self.assertRaises(ValueError):
         m.add_seasonality(name='trend', period=30, fourier_order=5)
     m.add_seasonality(name='weekly', period=30, fourier_order=5)
     # Test priors
     m = Prophet(
         holidays=holidays, yearly_seasonality=False,
         seasonality_mode='multiplicative',
     )
     m.add_seasonality(name='monthly', period=30, fourier_order=5,
                       prior_scale=2., mode='additive')
     m.fit(DATA.copy())
     self.assertEqual(m.seasonalities['monthly']['mode'], 'additive')
     self.assertEqual(m.seasonalities['weekly']['mode'], 'multiplicative')
     seasonal_features, prior_scales, component_cols, modes = (
         m.make_all_seasonality_features(m.history)
     )
     self.assertEqual(sum(component_cols['monthly']), 10)
     self.assertEqual(sum(component_cols['special_day']), 1)
     self.assertEqual(sum(component_cols['weekly']), 6)
     self.assertEqual(sum(component_cols['additive_terms']), 10)
     self.assertEqual(sum(component_cols['multiplicative_terms']), 7)
     if seasonal_features.columns[0] == 'monthly_delim_1':
         true = [2.] * 10 + [10.] * 6 + [4.]
         self.assertEqual(sum(component_cols['monthly'][:10]), 10)
         self.assertEqual(sum(component_cols['weekly'][10:16]), 6)
     else:
         true = [10.] * 6 + [2.] * 10 + [4.]
         self.assertEqual(sum(component_cols['weekly'][:6]), 6)
         self.assertEqual(sum(component_cols['monthly'][6:16]), 10)
     self.assertEqual(prior_scales, true)
开发者ID:cathleenyuan,项目名称:prophet,代码行数:52,代码来源:test_prophet.py

示例3: test_cross_validation_extra_regressors

# 需要导入模块: from fbprophet import Prophet [as 别名]
# 或者: from fbprophet.Prophet import add_seasonality [as 别名]
 def test_cross_validation_extra_regressors(self):
     df = self.__df.copy()
     df['extra'] = range(df.shape[0])
     m = Prophet()
     m.add_seasonality(name='monthly', period=30.5, fourier_order=5)
     m.add_regressor('extra')
     m.fit(df)
     df_cv = diagnostics.cross_validation(
         m, horizon='4 days', period='4 days', initial='135 days')
     self.assertEqual(len(np.unique(df_cv['cutoff'])), 2)
     period = pd.Timedelta('4 days')
     dc = df_cv['cutoff'].diff()
     dc = dc[dc > pd.Timedelta(0)].min()
     self.assertTrue(dc >= period)
     self.assertTrue((df_cv['cutoff'] < df_cv['ds']).all())
     df_merged = pd.merge(df_cv, self.__df, 'left', on='ds')
     self.assertAlmostEqual(
         np.sum((df_merged['y_x'] - df_merged['y_y']) ** 2), 0.0)
开发者ID:HuXufeng,项目名称:prophet,代码行数:20,代码来源:test_diagnostics.py

示例4: Prophet

# 需要导入模块: from fbprophet import Prophet [as 别名]
# 或者: from fbprophet.Prophet import add_seasonality [as 别名]
    fig = sm.graphics.tsa.plot_pacf(view_hour['distinct_freq_sum'], lags=24, ax=axes[1])
##acf_pacf()

#######################################
### Beginning of Prophet section
#######################################
#%%
view_hour['y'] = np.log(view_hour['distinct_freq_sum'])
view_hour['ds'] = view_hour['date_hour']
view_hour.head(5)

#%%
## Prophet1
# set the uncertainty interval to 95% (the Prophet default is 80%)
m = Prophet()
m.add_seasonality(name='hourly', period=24, fourier_order=2)
m.fit(view_hour);


#%%
## Create a dataframe for the future dates
## The tail will only display the time periods without the forecasted values
future = m.make_future_dataframe(periods=24,freq='H')
future.tail()

#%%
## This is the data that is exponentiated below
forecast = m.predict(future)
forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()

#%%
开发者ID:Ecoware,项目名称:Advanced_Analytics,代码行数:33,代码来源:READ+GCS+-+Prophet+2.py

示例5: test_copy

# 需要导入模块: from fbprophet import Prophet [as 别名]
# 或者: from fbprophet.Prophet import add_seasonality [as 别名]
    def test_copy(self):
        df = DATA_all.copy()
        df['cap'] = 200.
        df['binary_feature'] = [0] * 255 + [1] * 255
        # These values are created except for its default values
        holiday = pd.DataFrame(
            {'ds': pd.to_datetime(['2016-12-25']), 'holiday': ['x']})
        products = itertools.product(
            ['linear', 'logistic'],  # growth
            [None, pd.to_datetime(['2016-12-25'])],  # changepoints
            [3],  # n_changepoints
            [0.9],  # changepoint_range
            [True, False],  # yearly_seasonality
            [True, False],  # weekly_seasonality
            [True, False],  # daily_seasonality
            [None, holiday],  # holidays
            ['additive', 'multiplicative'],  # seasonality_mode
            [1.1],  # seasonality_prior_scale
            [1.1],  # holidays_prior_scale
            [0.1],  # changepoint_prior_scale
            [100],  # mcmc_samples
            [0.9],  # interval_width
            [200]  # uncertainty_samples
        )
        # Values should be copied correctly
        for product in products:
            m1 = Prophet(*product)
            m1.history = m1.setup_dataframe(
                df.copy(), initialize_scales=True)
            m1.set_auto_seasonalities()
            m2 = diagnostics.prophet_copy(m1)
            self.assertEqual(m1.growth, m2.growth)
            self.assertEqual(m1.n_changepoints, m2.n_changepoints)
            self.assertEqual(m1.changepoint_range, m2.changepoint_range)
            self.assertEqual(m1.changepoints, m2.changepoints)
            self.assertEqual(False, m2.yearly_seasonality)
            self.assertEqual(False, m2.weekly_seasonality)
            self.assertEqual(False, m2.daily_seasonality)
            self.assertEqual(
                m1.yearly_seasonality, 'yearly' in m2.seasonalities)
            self.assertEqual(
                m1.weekly_seasonality, 'weekly' in m2.seasonalities)
            self.assertEqual(
                m1.daily_seasonality, 'daily' in m2.seasonalities)
            if m1.holidays is None:
                self.assertEqual(m1.holidays, m2.holidays)
            else:
                self.assertTrue((m1.holidays == m2.holidays).values.all())
            self.assertEqual(m1.seasonality_mode, m2.seasonality_mode)
            self.assertEqual(m1.seasonality_prior_scale, m2.seasonality_prior_scale)
            self.assertEqual(m1.changepoint_prior_scale, m2.changepoint_prior_scale)
            self.assertEqual(m1.holidays_prior_scale, m2.holidays_prior_scale)
            self.assertEqual(m1.mcmc_samples, m2.mcmc_samples)
            self.assertEqual(m1.interval_width, m2.interval_width)
            self.assertEqual(m1.uncertainty_samples, m2.uncertainty_samples)

        # Check for cutoff and custom seasonality and extra regressors
        changepoints = pd.date_range('2012-06-15', '2012-09-15')
        cutoff = pd.Timestamp('2012-07-25')
        m1 = Prophet(changepoints=changepoints)
        m1.add_seasonality('custom', 10, 5)
        m1.add_regressor('binary_feature')
        m1.fit(df)
        m2 = diagnostics.prophet_copy(m1, cutoff=cutoff)
        changepoints = changepoints[changepoints <= cutoff]
        self.assertTrue((changepoints == m2.changepoints).all())
        self.assertTrue('custom' in m2.seasonalities)
        self.assertTrue('binary_feature' in m2.extra_regressors)
开发者ID:HuXufeng,项目名称:prophet,代码行数:70,代码来源:test_diagnostics.py


注:本文中的fbprophet.Prophet.add_seasonality方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。