本文整理汇总了Python中dipy.segment.clustering.QuickBundles.find_closest方法的典型用法代码示例。如果您正苦于以下问题:Python QuickBundles.find_closest方法的具体用法?Python QuickBundles.find_closest怎么用?Python QuickBundles.find_closest使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类dipy.segment.clustering.QuickBundles
的用法示例。
在下文中一共展示了QuickBundles.find_closest方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import find_closest [as 别名]
def main():
parser = buildArgsParser()
args = parser.parse_args()
full_tfile = nib.streamlines.load(args.full_tfile)
model_tfile = nib.streamlines.load(args.model_tfile)
model_mask = nib.load(args.model_mask)
# Bring streamlines to voxel space and where coordinate (0,0,0) represents the corner of a voxel.
model_tfile.tractogram.apply_affine(np.linalg.inv(model_mask.affine))
model_tfile.streamlines._data += 0.5 # Shift of half a voxel
full_tfile.tractogram.apply_affine(np.linalg.inv(model_mask.affine))
full_tfile.streamlines._data += 0.5 # Shift of half a voxel
assert(model_mask.get_data().sum() == create_binary_map(model_tfile.streamlines, model_mask).sum())
# Resample streamlines
full_streamlines = set_number_of_points(full_tfile.streamlines, args.nb_points_resampling)
model_streamlines = set_number_of_points(model_tfile.streamlines, args.nb_points_resampling)
# Segment model
rng = np.random.RandomState(42)
indices = np.arange(len(model_streamlines))
rng.shuffle(indices)
qb = QuickBundles(args.qb_threshold)
clusters = qb.cluster(model_streamlines, ordering=indices)
# Try to find optimal assignment threshold
best_threshold = None
best_f1_score = -np.inf
thresholds = np.arange(-2, 10, 0.2) + args.qb_threshold
for threshold in thresholds:
indices = qb.find_closest(clusters, full_streamlines, threshold=threshold)
nb_assignments = np.sum(indices != -1)
mask = create_binary_map(full_tfile.streamlines[indices != -1], model_mask)
overlap_per_bundle = _compute_overlap(model_mask.get_data(), mask)
overreach_per_bundle = _compute_overreach(model_mask.get_data(), mask)
# overreach_norm_gt_per_bundle = _compute_overreach_normalize_gt(model_mask.get_data(), mask)
f1_score = _compute_f1_score(overlap_per_bundle, overreach_per_bundle)
if best_f1_score < f1_score:
best_threshold = threshold
best_f1_score = f1_score
print("{}:\t {}/{} ({:.1%}) {:.1%}/{:.1%} ({:.1%}) {}/{}".format(
threshold,
nb_assignments, len(model_streamlines), nb_assignments/len(model_streamlines),
overlap_per_bundle, overreach_per_bundle, f1_score,
mask.sum(), model_mask.get_data().sum()))
if overlap_per_bundle >= 1:
break
print("Best threshold: {} with F1-Score of {}".format(best_threshold, best_f1_score))
示例2: auto_extract
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import find_closest [as 别名]
def auto_extract(model_cluster_map, rstreamlines,
number_pts_per_str=NB_POINTS_RESAMPLE,
close_centroids_thr=20,
clean_thr=7.,
disp=False, verbose=False,
ordering=None):
if ordering is None:
ordering = np.arange(len(rstreamlines))
qb = QuickBundles(threshold=REF_BUNDLES_THRESHOLD, metric=AveragePointwiseEuclideanMetric())
closest_bundles = qb.find_closest(model_cluster_map, rstreamlines, clean_thr, ordering=ordering)
return ordering[np.where(closest_bundles >= 0)[0]]
示例3: _auto_extract_VCs
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import find_closest [as 别名]
def _auto_extract_VCs(streamlines, ref_bundles):
# Streamlines = list of all streamlines
# TODO check what is neede
# VC = 0
VC_idx = set()
found_vbs_info = {}
for bundle in ref_bundles:
found_vbs_info[bundle['name']] = {'nb_streamlines': 0,
'streamlines_indices': set()}
# TODO probably not needed
# already_assigned_streamlines_idx = set()
# Need to bookkeep because we chunk for big datasets
processed_strl_count = 0
chunk_size = len(streamlines)
chunk_it = 0
# nb_bundles = len(ref_bundles)
# bundles_found = [False] * nb_bundles
#bundles_potential_VCWP = [set()] * nb_bundles
logging.debug("Starting scoring VCs")
# Start loop here for big datasets
while processed_strl_count < len(streamlines):
if processed_strl_count > 0:
raise NotImplementedError("Not supposed to have more than one chunk!")
logging.debug("Starting chunk: {0}".format(chunk_it))
strl_chunk = streamlines[chunk_it * chunk_size: (chunk_it + 1) * chunk_size]
processed_strl_count += len(strl_chunk)
# Already resample and run quickbundles on the submission chunk,
# to avoid doing it at every call of auto_extract
rstreamlines = set_number_of_points(nib.streamlines.ArraySequence(strl_chunk), NB_POINTS_RESAMPLE)
# qb.cluster had problem with f8
# rstreamlines = [s.astype('f4') for s in rstreamlines]
# chunk_cluster_map = qb.cluster(rstreamlines)
# chunk_cluster_map.refdata = strl_chunk
# # Merge clusters
# all_bundles = ClusterMapCentroid()
# cluster_id_to_bundle_id = []
# for bundle_idx, ref_bundle in enumerate(ref_bundles):
# clusters = ref_bundle["cluster_map"]
# cluster_id_to_bundle_id.extend([bundle_idx] * len(clusters))
# all_bundles.add_cluster(*clusters)
# logging.debug("Starting VC identification through auto_extract")
# qb = QuickBundles(threshold=10, metric=AveragePointwiseEuclideanMetric())
# closest_bundles = qb.find_closest(all_bundles, rstreamlines, threshold=7)
# print("Unassigned streamlines: {}".format(np.sum(closest_bundles == -1)))
# for cluster_id, bundle_id in enumerate(cluster_id_to_bundle_id):
# indices = np.where(closest_bundles == cluster_id)[0]
# print("{}/{} ({}) Found {}".format(cluster_id, len(cluster_id_to_bundle_id), ref_bundles[bundle_id]['name'], len(indices)))
# if len(indices) == 0:
# continue
# vb_info = found_vbs_info.get(ref_bundles[bundle_id]['name'])
# indices = set(indices)
# vb_info['nb_streamlines'] += len(indices)
# vb_info['streamlines_indices'] |= indices
# VC_idx |= indices
qb = QuickBundles(threshold=10, metric=AveragePointwiseEuclideanMetric())
ordering = np.arange(len(rstreamlines))
logging.debug("Starting VC identification through auto_extract")
for bundle_idx, ref_bundle in enumerate(ref_bundles):
print(ref_bundle['name'], ref_bundle['threshold'], len(ref_bundle['cluster_map']))
# The selected indices are from [0, len(strl_chunk)]
# selected_streamlines_indices = auto_extract(ref_bundle['cluster_map'],
# rstreamlines,
# clean_thr=ref_bundle['threshold'],
# ordering=ordering)
closest_bundles = qb.find_closest(ref_bundle['cluster_map'], rstreamlines[ordering], ref_bundle['threshold'])
selected_streamlines_indices = ordering[closest_bundles >= 0]
ordering = ordering[closest_bundles == -1]
# Remove duplicates, when streamlines are assigned to multiple VBs.
# TODO better handling of this case
# selected_streamlines_indices = set(selected_streamlines_indices) - cur_chunk_VC_idx
# cur_chunk_VC_idx |= selected_streamlines_indices
nb_selected_streamlines = len(selected_streamlines_indices)
print("{} assigned".format(nb_selected_streamlines))
if nb_selected_streamlines:
# bundles_found[bundle_idx] = True
# VC += nb_selected_streamlines
#.........这里部分代码省略.........