当前位置: 首页>>代码示例>>Python>>正文


Python clustering.QuickBundles类代码示例

本文整理汇总了Python中dipy.segment.clustering.QuickBundles的典型用法代码示例。如果您正苦于以下问题:Python QuickBundles类的具体用法?Python QuickBundles怎么用?Python QuickBundles使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了QuickBundles类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_quickbundles_with_python_metric

def test_quickbundles_with_python_metric():

    class MDFpy(dipymetric.Metric):
        def are_compatible(self, shape1, shape2):
            return shape1 == shape2

        def dist(self, features1, features2):
            dist = np.sqrt(np.sum((features1 - features2)**2, axis=1))
            dist = np.sum(dist / len(features1))
            return dist

    rdata = streamline_utils.set_number_of_points(data, 10)
    qb = QuickBundles(threshold=2 * threshold, metric=MDFpy())

    clusters = qb.cluster(rdata)

    # By default `refdata` refers to data being clustered.
    assert_equal(clusters.refdata, rdata)
    # Set `refdata` to return indices instead of actual data points.
    clusters.refdata = None
    assert_array_equal(list(itertools.chain(*clusters)),
                       list(itertools.chain(*clusters_truth)))

    # Cluster read-only data
    for datum in rdata:
        datum.setflags(write=False)

    # Cluster data with different dtype (should be converted into float32)
    for datatype in [np.float64, np.int32, np.int64]:
        newdata = [datum.astype(datatype) for datum in rdata]
        clusters = qb.cluster(newdata)
        assert_equal(clusters.centroids[0].dtype, np.float32)
开发者ID:StongeEtienne,项目名称:dipy,代码行数:32,代码来源:test_quickbundles.py

示例2: test_quickbundles_memory_leaks

def test_quickbundles_memory_leaks():
    qb = QuickBundles(threshold=2*threshold)

    type_name_pattern = "memoryview"
    initial_types_refcount = get_type_refcount(type_name_pattern)

    qb.cluster(data)
    # At this point, all memoryviews created during clustering should be freed.
    assert_equal(get_type_refcount(type_name_pattern), initial_types_refcount)
开发者ID:gauvinalexandre,项目名称:dipy,代码行数:9,代码来源:test_quickbundles.py

示例3: main

def main():
    parser = buildArgsParser()
    args = parser.parse_args()

    full_tfile = nib.streamlines.load(args.full_tfile)
    model_tfile = nib.streamlines.load(args.model_tfile)
    model_mask = nib.load(args.model_mask)

    # Bring streamlines to voxel space and where coordinate (0,0,0) represents the corner of a voxel.
    model_tfile.tractogram.apply_affine(np.linalg.inv(model_mask.affine))
    model_tfile.streamlines._data += 0.5  # Shift of half a voxel
    full_tfile.tractogram.apply_affine(np.linalg.inv(model_mask.affine))
    full_tfile.streamlines._data += 0.5  # Shift of half a voxel

    assert(model_mask.get_data().sum() == create_binary_map(model_tfile.streamlines, model_mask).sum())

    # Resample streamlines
    full_streamlines = set_number_of_points(full_tfile.streamlines, args.nb_points_resampling)
    model_streamlines = set_number_of_points(model_tfile.streamlines, args.nb_points_resampling)

    # Segment model
    rng = np.random.RandomState(42)
    indices = np.arange(len(model_streamlines))
    rng.shuffle(indices)
    qb = QuickBundles(args.qb_threshold)
    clusters = qb.cluster(model_streamlines, ordering=indices)

    # Try to find optimal assignment threshold
    best_threshold = None
    best_f1_score = -np.inf
    thresholds = np.arange(-2, 10, 0.2) + args.qb_threshold
    for threshold in thresholds:
        indices = qb.find_closest(clusters, full_streamlines, threshold=threshold)
        nb_assignments = np.sum(indices != -1)

        mask = create_binary_map(full_tfile.streamlines[indices != -1], model_mask)

        overlap_per_bundle = _compute_overlap(model_mask.get_data(), mask)
        overreach_per_bundle = _compute_overreach(model_mask.get_data(), mask)
        # overreach_norm_gt_per_bundle = _compute_overreach_normalize_gt(model_mask.get_data(), mask)
        f1_score = _compute_f1_score(overlap_per_bundle, overreach_per_bundle)
        if best_f1_score < f1_score:
            best_threshold = threshold
            best_f1_score = f1_score

        print("{}:\t {}/{} ({:.1%}) {:.1%}/{:.1%} ({:.1%}) {}/{}".format(
            threshold,
            nb_assignments, len(model_streamlines), nb_assignments/len(model_streamlines),
            overlap_per_bundle, overreach_per_bundle, f1_score,
            mask.sum(), model_mask.get_data().sum()))

        if overlap_per_bundle >= 1:
            break


    print("Best threshold: {} with F1-Score of {}".format(best_threshold, best_f1_score))
开发者ID:ppoulin91,项目名称:learn2track,代码行数:56,代码来源:auto_find_qb_threshold.py

示例4: test_quickbundles_with_not_order_invariant_metric

def test_quickbundles_with_not_order_invariant_metric():
    metric = dipymetric.AveragePointwiseEuclideanMetric()
    qb = QuickBundles(threshold=np.inf, metric=metric)

    streamline = np.arange(10*3, dtype=dtype).reshape((-1, 3))
    streamlines = [streamline, streamline[::-1]]

    clusters = qb.cluster(streamlines)
    assert_equal(len(clusters), 1)
    assert_array_equal(clusters[0].centroid, streamline)
开发者ID:gauvinalexandre,项目名称:dipy,代码行数:10,代码来源:test_quickbundles.py

示例5: bench_quickbundles

def bench_quickbundles():
    dtype = "float32"
    repeat = 10
    nb_points = 12

    streams, hdr = nib.trackvis.read(get_fnames('fornix'))
    fornix = [s[0].astype(dtype) for s in streams]
    fornix = streamline_utils.set_number_of_points(fornix, nb_points)

    # Create eight copies of the fornix to be clustered (one in each octant).
    streamlines = []
    streamlines += [s + np.array([100, 100, 100], dtype) for s in fornix]
    streamlines += [s + np.array([100, -100, 100], dtype) for s in fornix]
    streamlines += [s + np.array([100, 100, -100], dtype) for s in fornix]
    streamlines += [s + np.array([100, -100, -100], dtype) for s in fornix]
    streamlines += [s + np.array([-100, 100, 100], dtype) for s in fornix]
    streamlines += [s + np.array([-100, -100, 100], dtype) for s in fornix]
    streamlines += [s + np.array([-100, 100, -100], dtype) for s in fornix]
    streamlines += [s + np.array([-100, -100, -100], dtype) for s in fornix]

    # The expected number of clusters of the fornix using threshold=10 is 4.
    threshold = 10.
    expected_nb_clusters = 4 * 8

    print("Timing QuickBundles 1.0 vs. 2.0")

    qb = QB_Old(streamlines, threshold, pts=None)
    qb1_time = measure("QB_Old(streamlines, threshold, nb_points)", repeat)
    print("QuickBundles time: {0:.4}sec".format(qb1_time))
    assert_equal(qb.total_clusters, expected_nb_clusters)
    sizes1 = [qb.partitions()[i]['N'] for i in range(qb.total_clusters)]
    indices1 = [qb.partitions()[i]['indices']
                for i in range(qb.total_clusters)]

    qb2 = QB_New(threshold)
    qb2_time = measure("clusters = qb2.cluster(streamlines)", repeat)
    print("QuickBundles2 time: {0:.4}sec".format(qb2_time))
    print("Speed up of {0}x".format(qb1_time / qb2_time))
    clusters = qb2.cluster(streamlines)
    sizes2 = map(len, clusters)
    indices2 = map(lambda c: c.indices, clusters)
    assert_equal(len(clusters), expected_nb_clusters)
    assert_array_equal(list(sizes2), sizes1)
    assert_arrays_equal(indices2, indices1)

    qb = QB_New(threshold, metric=MDFpy())
    qb3_time = measure("clusters = qb.cluster(streamlines)", repeat)
    print("QuickBundles2_python time: {0:.4}sec".format(qb3_time))
    print("Speed up of {0}x".format(qb1_time / qb3_time))
    clusters = qb.cluster(streamlines)
    sizes3 = map(len, clusters)
    indices3 = map(lambda c: c.indices, clusters)
    assert_equal(len(clusters), expected_nb_clusters)
    assert_array_equal(list(sizes3), sizes1)
    assert_arrays_equal(indices3, indices1)
开发者ID:StongeEtienne,项目名称:dipy,代码行数:55,代码来源:bench_quickbundles.py

示例6: auto_extract

def auto_extract(model_cluster_map, rstreamlines,
                 number_pts_per_str=NB_POINTS_RESAMPLE,
                 close_centroids_thr=20,
                 clean_thr=7.,
                 disp=False, verbose=False,
                 ordering=None):

    if ordering is None:
        ordering = np.arange(len(rstreamlines))

    qb = QuickBundles(threshold=REF_BUNDLES_THRESHOLD, metric=AveragePointwiseEuclideanMetric())
    closest_bundles = qb.find_closest(model_cluster_map, rstreamlines, clean_thr, ordering=ordering)
    return ordering[np.where(closest_bundles >= 0)[0]]
开发者ID:ppoulin91,项目名称:learn2track,代码行数:13,代码来源:learn2track_metrics.py

示例7: test_quickbundles_shape_uncompatibility

def test_quickbundles_shape_uncompatibility():
    # QuickBundles' old default metric (AveragePointwiseEuclideanMetric, aka MDF)
    # requires that all streamlines have the same number of points.
    metric = dipymetric.AveragePointwiseEuclideanMetric()
    qb = QuickBundles(threshold=20., metric=metric)
    assert_raises(ValueError, qb.cluster, data)

    # QuickBundles' new default metric (AveragePointwiseEuclideanMetric, aka MDF
    #  combined with ResampleFeature) will automatically resample streamlines so
    #  they all have 18 points.
    qb = QuickBundles(threshold=20.)
    clusters1 = qb.cluster(data)

    feature = dipymetric.ResampleFeature(nb_points=18)
    metric = dipymetric.AveragePointwiseEuclideanMetric(feature)
    qb = QuickBundles(threshold=20., metric=metric)
    clusters2 = qb.cluster(data)

    assert_array_equal(list(itertools.chain(*clusters1)), list(itertools.chain(*clusters2)))
开发者ID:JohnGriffiths,项目名称:dipy,代码行数:19,代码来源:test_quickbundles.py

示例8: test_quickbundles_streamlines

def test_quickbundles_streamlines():
    rdata = streamline_utils.set_number_of_points(data, 10)
    qb = QuickBundles(threshold=2*threshold)

    clusters = qb.cluster(rdata)
    # By default `refdata` refers to data being clustered.
    assert_equal(clusters.refdata, rdata)
    # Set `refdata` to return indices instead of actual data points.
    clusters.refdata = None
    assert_array_equal(list(itertools.chain(*clusters)),
                       list(itertools.chain(*clusters_truth)))

    # Cluster read-only data
    for datum in rdata:
        datum.setflags(write=False)

    # Cluster data with different dtype (should be converted into float32)
    for datatype in [np.float64, np.int32, np.int64]:
        newdata = [datum.astype(datatype) for datum in rdata]
        clusters = qb.cluster(newdata)
        assert_equal(clusters.centroids[0].dtype, np.float32)
开发者ID:StongeEtienne,项目名称:dipy,代码行数:21,代码来源:test_quickbundles.py

示例9: _prepare_gt_bundles_info

def _prepare_gt_bundles_info(bundles_dir, bundles_masks_dir,
                             gt_bundles_attribs, ref_anat_fname):
    # Ref bundles will contain {'name': 'name_of_the_bundle',
    #                           'threshold': thres_value,
    #                           'streamlines': list_of_streamlines}

    dummy_attribs = {'orientation': 'LPS'}
    qb = QuickBundles(20, metric=AveragePointwiseEuclideanMetric())

    ref_bundles = []

    for bundle_idx, bundle_f in enumerate(sorted(os.listdir(bundles_dir))):
        bundle_name = os.path.splitext(os.path.basename(bundle_f))[0]

        bundle_attribs = gt_bundles_attribs.get(os.path.basename(bundle_f))
        if bundle_attribs is None:
            raise ValueError(
                "Missing basic bundle attribs for {0}".format(bundle_f))

        # Already resample to avoid doing it for each iteration of chunking
        orig_strl = [s for s in get_tracts_voxel_space_for_dipy(
                        os.path.join(bundles_dir, bundle_f),
                        ref_anat_fname, dummy_attribs)]

        resamp_bundle = set_number_of_points(orig_strl, NB_POINTS_RESAMPLE)
        resamp_bundle = [s.astype('f4') for s in resamp_bundle]

        bundle_cluster_map = qb.cluster(resamp_bundle)
        bundle_cluster_map.refdata = resamp_bundle

        bundle_mask = nib.load(os.path.join(bundles_masks_dir,
                                            bundle_name + '.nii.gz'))

        ref_bundles.append({'name': bundle_name,
                            'threshold': bundle_attribs['cluster_threshold'],
                            'cluster_map': bundle_cluster_map,
                            'mask': bundle_mask})

    return ref_bundles
开发者ID:scilus,项目名称:tractometer_scorer,代码行数:39,代码来源:scoring.py

示例10: score_from_files

def score_from_files(filename, masks_dir, bundles_dir,
                     tracts_attribs, basic_bundles_attribs,
                     save_segmented=False, save_IBs=False,
                     save_VBs=False, save_VCWPs=False,
                     segmented_out_dir='', segmented_base_name='',
                     verbose=False):
    """
    Computes all metrics in order to score a tractogram.

    Given a ``tck`` file of streamlines and a folder containing masks,
    compute the percent of: Valid Connections (VC), Invalid Connections (IC),
    Valid Connections but Wrong Path (VCWP), No Connections (NC),
    Average Bundle Coverage (ABC), Average ROIs Coverage (ARC),
    coverage per bundles and coverage per ROIs. It also provides the number of:
    Valid Bundles (VB), Invalid Bundles (IB) and streamlines per bundles.


    Parameters
    ------------
    filename : str
       name of a tracts file
    masks_dir : str
       name of the directory containing the masks
    save_segmented : bool
        if true, saves the segmented VC, IC, VCWP and NC

    Returns
    ---------
    scores : dict
        dictionnary containing a score for each metric
    indices : dict
        dictionnary containing the indices of streamlines composing VC, IC,
        VCWP and NC

    """
    if verbose:
        logging.basicConfig(level=logging.DEBUG)

    rois_dir = masks_dir + "rois/"
    bundles_masks_dir = masks_dir + "bundles/"
    wm_file = masks_dir + "wm.nii.gz"
    wm = nib.load(wm_file)

    streamlines = load_streamlines(filename, wm_file, tracts_attribs)

    ROIs = [nib.load(rois_dir + f) for f in sorted(os.listdir(rois_dir))]
    bundles_masks = [nib.load(bundles_masks_dir + f) for f in sorted(os.listdir(bundles_masks_dir))]
    ref_bundles = []

    # Ref bundles will contain {'name': 'name_of_the_bundle', 'threshold': thres_value,
    #                           'streamlines': list_of_streamlines}
    dummy_attribs = {'orientation': 'LPS'}
    qb = QuickBundles(threshold=REF_BUNDLES_THRESHOLD, metric=AveragePointwiseEuclideanMetric())

    out_centroids_dir = os.path.join(segmented_out_dir, os.path.pardir, "centroids")
    if not os.path.isdir(out_centroids_dir):
        os.mkdir(out_centroids_dir)

    rng = np.random.RandomState(42)

    for bundle_idx, bundle_f in enumerate(sorted(os.listdir(bundles_dir))):
        bundle_attribs = basic_bundles_attribs.get(os.path.basename(bundle_f))
        if bundle_attribs is None:
            raise ValueError("Missing basic bundle attribs for {0}".format(bundle_f))

        # # Already resample to avoid doing it for each iteration of chunking
        # orig_strl = [s for s in get_tracts_voxel_space_for_dipy(
        #                         os.path.join(bundles_dir, bundle_f),
        #                         wm_file, dummy_attribs)]
        orig_strl = load_streamlines(os.path.join(bundles_dir, bundle_f), wm_file, dummy_attribs)
        resamp_bundle = set_number_of_points(orig_strl, NB_POINTS_RESAMPLE)
        # resamp_bundle = [s.astype('f4') for s in resamp_bundle]

        indices = np.arange(len(resamp_bundle))
        rng.shuffle(indices)
        bundle_cluster_map = qb.cluster(resamp_bundle, ordering=indices)

        # bundle_cluster_map.refdata = resamp_bundle

        bundle_mask_inv = nib.Nifti1Image((1 - bundles_masks[bundle_idx].get_data()) * wm.get_data(),
                                          bundles_masks[bundle_idx].get_affine())

        ref_bundles.append({'name': os.path.basename(bundle_f).replace('.fib', '').replace('.tck', ''),
                            'threshold': bundle_attribs['cluster_threshold'],
                            'cluster_map': bundle_cluster_map,
                            'mask': bundles_masks[bundle_idx],
                            'mask_inv': bundle_mask_inv})

        logging.debug("{}: {} centroids".format(ref_bundles[-1]['name'], len(bundle_cluster_map)))
        nib.streamlines.save(nib.streamlines.Tractogram(bundle_cluster_map.centroids, affine_to_rasmm=np.eye(4)),
                             os.path.join(out_centroids_dir, ref_bundles[-1]['name'] + ".tck"))

    score_func = score_auto_extract_auto_IBs

    return score_func(streamlines, bundles_masks, ref_bundles, ROIs, wm,
                      save_segmented=save_segmented, save_IBs=save_IBs,
                      save_VBs=save_VBs, save_VCWPs=save_VCWPs,
                      out_segmented_strl_dir=segmented_out_dir,
                      base_out_segmented_strl=segmented_base_name,
                      ref_anat_fname=wm_file)
开发者ID:ppoulin91,项目名称:learn2track,代码行数:100,代码来源:learn2track_metrics.py

示例11: _auto_extract_VCs

def _auto_extract_VCs(streamlines, ref_bundles):
    # Streamlines = list of all streamlines

    # TODO check what is neede
    # VC = 0
    VC_idx = set()

    found_vbs_info = {}
    for bundle in ref_bundles:
        found_vbs_info[bundle['name']] = {'nb_streamlines': 0,
                                          'streamlines_indices': set()}

    # TODO probably not needed
    # already_assigned_streamlines_idx = set()

    # Need to bookkeep because we chunk for big datasets
    processed_strl_count = 0
    chunk_size = len(streamlines)
    chunk_it = 0

    # nb_bundles = len(ref_bundles)
    # bundles_found = [False] * nb_bundles
    #bundles_potential_VCWP = [set()] * nb_bundles

    logging.debug("Starting scoring VCs")

    # Start loop here for big datasets
    while processed_strl_count < len(streamlines):
        if processed_strl_count > 0:
            raise NotImplementedError("Not supposed to have more than one chunk!")

        logging.debug("Starting chunk: {0}".format(chunk_it))

        strl_chunk = streamlines[chunk_it * chunk_size: (chunk_it + 1) * chunk_size]

        processed_strl_count += len(strl_chunk)

        # Already resample and run quickbundles on the submission chunk,
        # to avoid doing it at every call of auto_extract
        rstreamlines = set_number_of_points(nib.streamlines.ArraySequence(strl_chunk), NB_POINTS_RESAMPLE)

        # qb.cluster had problem with f8
        # rstreamlines = [s.astype('f4') for s in rstreamlines]

        # chunk_cluster_map = qb.cluster(rstreamlines)
        # chunk_cluster_map.refdata = strl_chunk

        # # Merge clusters
        # all_bundles = ClusterMapCentroid()
        # cluster_id_to_bundle_id = []
        # for bundle_idx, ref_bundle in enumerate(ref_bundles):
        #     clusters = ref_bundle["cluster_map"]
        #     cluster_id_to_bundle_id.extend([bundle_idx] * len(clusters))
        #     all_bundles.add_cluster(*clusters)

        # logging.debug("Starting VC identification through auto_extract")
        # qb = QuickBundles(threshold=10, metric=AveragePointwiseEuclideanMetric())
        # closest_bundles = qb.find_closest(all_bundles, rstreamlines, threshold=7)

        # print("Unassigned streamlines: {}".format(np.sum(closest_bundles == -1)))

        # for cluster_id, bundle_id in enumerate(cluster_id_to_bundle_id):
        #     indices = np.where(closest_bundles == cluster_id)[0]
        #     print("{}/{} ({}) Found {}".format(cluster_id, len(cluster_id_to_bundle_id), ref_bundles[bundle_id]['name'], len(indices)))
        #     if len(indices) == 0:
        #         continue

        #     vb_info = found_vbs_info.get(ref_bundles[bundle_id]['name'])
        #     indices = set(indices)
        #     vb_info['nb_streamlines'] += len(indices)
        #     vb_info['streamlines_indices'] |= indices
        #     VC_idx |= indices

        qb = QuickBundles(threshold=10, metric=AveragePointwiseEuclideanMetric())
        ordering = np.arange(len(rstreamlines))
        logging.debug("Starting VC identification through auto_extract")
        for bundle_idx, ref_bundle in enumerate(ref_bundles):
            print(ref_bundle['name'], ref_bundle['threshold'], len(ref_bundle['cluster_map']))
            # The selected indices are from [0, len(strl_chunk)]
            # selected_streamlines_indices = auto_extract(ref_bundle['cluster_map'],
            #                                             rstreamlines,
            #                                             clean_thr=ref_bundle['threshold'],
            #                                             ordering=ordering)

            closest_bundles = qb.find_closest(ref_bundle['cluster_map'], rstreamlines[ordering], ref_bundle['threshold'])
            selected_streamlines_indices = ordering[closest_bundles >= 0]
            ordering = ordering[closest_bundles == -1]

            # Remove duplicates, when streamlines are assigned to multiple VBs.
            # TODO better handling of this case
            # selected_streamlines_indices = set(selected_streamlines_indices) - cur_chunk_VC_idx
            # cur_chunk_VC_idx |= selected_streamlines_indices

            nb_selected_streamlines = len(selected_streamlines_indices)
            print("{} assigned".format(nb_selected_streamlines))

            if nb_selected_streamlines:
                # bundles_found[bundle_idx] = True
                # VC += nb_selected_streamlines

#.........这里部分代码省略.........
开发者ID:ppoulin91,项目名称:learn2track,代码行数:101,代码来源:learn2track_metrics.py

示例12: import


from dipy.segment.metric import (AveragePointwiseEuclideanMetric,
                                 ResampleFeature)
from dipy.segment.clustering import QuickBundles

feature = ResampleFeature(nb_points=100)
metric = AveragePointwiseEuclideanMetric(feature)

"""
Since we are going to include all of the streamlines in the single cluster
from the streamlines, we set the threshold to `np.inf`. We pull out the
centroid as the standard.
"""

qb = QuickBundles(np.inf, metric=metric)

cluster_cst_l = qb.cluster(model_cst_l)
standard_cst_l = cluster_cst_l.centroids[0]

cluster_af_l = qb.cluster(model_af_l)
standard_af_l = cluster_af_l.centroids[0]

"""
We use the centroid streamline for each atlas bundle as the standard to orient
all of the streamlines in each bundle from the individual subject. Here, the
affine used is the one from the transform between the atlas and individual
tractogram. This is so that the orienting is done relative to the space of the
individual, and not relative to the atlas space.
"""
开发者ID:StongeEtienne,项目名称:dipy,代码行数:28,代码来源:afq_tract_profiles.py

示例13: auto_extract_VCs

def auto_extract_VCs(streamlines, ref_bundles):
    # Streamlines = list of all streamlines

    VC = 0
    VC_idx = set()

    found_vbs_info = {}
    for bundle in ref_bundles:
        found_vbs_info[bundle['name']] = {'nb_streamlines': 0,
                                          'streamlines_indices': set()}

    # Need to bookkeep because we chunk for big datasets
    processed_strl_count = 0
    chunk_size = 5000
    chunk_it = 0

    nb_bundles = len(ref_bundles)
    bundles_found = [False] * nb_bundles

    logging.debug("Starting scoring VCs")

    qb = QuickBundles(threshold=20, metric=AveragePointwiseEuclideanMetric())

    # Start loop here for big datasets
    while processed_strl_count < len(streamlines):
        logging.debug("Starting chunk: {0}".format(chunk_it))

        strl_chunk = streamlines[chunk_it * chunk_size:
                                 (chunk_it + 1) * chunk_size]

        processed_strl_count += len(strl_chunk)
        cur_chunk_VC_idx, cur_chunk_IC_idx, cur_chunk_VCWP_idx = set(), set(), set()

        # Already resample and run quickbundles on the submission chunk,
        # to avoid doing it at every call of auto_extract
        rstreamlines = set_number_of_points(strl_chunk, NB_POINTS_RESAMPLE)

        # qb.cluster had problem with f8
        rstreamlines = [s.astype('f4') for s in rstreamlines]

        chunk_cluster_map = qb.cluster(rstreamlines)
        chunk_cluster_map.refdata = strl_chunk

        logging.debug("Starting VC identification through auto_extract")

        for bundle_idx, ref_bundle in enumerate(ref_bundles):
            # The selected indices are from [0, len(strl_chunk)]
            selected_streamlines_indices = auto_extract(ref_bundle['cluster_map'],
                                                        chunk_cluster_map,
                                                        clean_thr=ref_bundle['threshold'])

            # Remove duplicates, when streamlines are assigned to multiple VBs.
            selected_streamlines_indices = set(selected_streamlines_indices) - \
                                           cur_chunk_VC_idx
            cur_chunk_VC_idx |= selected_streamlines_indices

            nb_selected_streamlines = len(selected_streamlines_indices)

            if nb_selected_streamlines:
                bundles_found[bundle_idx] = True
                VC += nb_selected_streamlines

                # Shift indices to match the real number of streamlines
                global_select_strl_indices = set([v + chunk_it * chunk_size
                                                 for v in selected_streamlines_indices])
                vb_info = found_vbs_info.get(ref_bundle['name'])
                vb_info['nb_streamlines'] += nb_selected_streamlines
                vb_info['streamlines_indices'] |= global_select_strl_indices

                VC_idx |= global_select_strl_indices
            else:
                global_select_strl_indices = set()

        chunk_it += 1

    # Compute bundle overlap, overreach and f1_scores and update found_vbs_info
    for bundle_idx, ref_bundle in enumerate(ref_bundles):
        bundle_name = ref_bundle["name"]
        bundle_mask = ref_bundle["mask"]

        vb_info = found_vbs_info[bundle_name]

        # Streamlines are in voxel space since that's how they were
        # loaded in the scoring function.
        tractogram = Tractogram(streamlines=(streamlines[i] for i in vb_info['streamlines_indices']),
                                affine_to_rasmm=bundle_mask.affine)

        scores = {}
        if len(tractogram) > 0:
            scores = compute_bundle_coverage_scores(tractogram, bundle_mask)

        vb_info['overlap'] = scores.get("OL", 0)
        vb_info['overreach'] = scores.get("OR", 0)
        vb_info['overreach_norm'] = scores.get("ORn", 0)
        vb_info['f1_score'] = scores.get("F1", 0)

    return VC_idx, found_vbs_info
开发者ID:scilus,项目名称:tractometer_scorer,代码行数:97,代码来源:valid_connections.py

示例14: QuickBundles


"""
Fiber clustering
----------------

Based on an agglomerative clustering, and a geometric distance.
"""

clustering_outdir = os.path.join(outdir, "clustering")
cluster_file = os.path.join(clustering_outdir, "clusters.json")
if not os.path.isdir(clustering_outdir):
    os.mkdir(clustering_outdir)
if not os.path.isfile(cluster_file):
    fibers_18 = [resample(track, nb_pol=18) for track in fibers]
    qb = QuickBundles(threshold=10.)
    clusters_ = qb.cluster(fibers_18)
    clusters = {}
    for cnt, cluster in enumerate(clusters_):
        clusters[str(cnt)] = {"indices": cluster.indices}
    with open(cluster_file, "w") as open_file:
        json.dump(clusters, open_file, indent=4)
else:
    with open(cluster_file) as open_file:
        clusters = json.load(open_file)

if 1: #use_vtk:
    ren = pvtk.ren()
    colors = numpy.ones((len(fibers),))
    nb_clusters = len(clusters)
    for clusterid, item in clusters.items():
开发者ID:dgoyard,项目名称:caps-clindmri,代码行数:29,代码来源:fiber_bundles.py

示例15: points

"""

streams, hdr = tv.read(fname)

streamlines = [i[0] for i in streams]

"""
Perform QuickBundles clustering using the MDF metric and a 10mm distance
threshold. Keep in mind that since the MDF metric requires streamlines to have
the same number of points, the clustering algorithm will internally use a
representation of streamlines that have been automatically downsampled/upsampled
so they have only 12 points (To set manually the number of points,
see :ref:`clustering-examples-ResampleFeature`).
"""

qb = QuickBundles(threshold=10.)
clusters = qb.cluster(streamlines)

"""
`clusters` is a `ClusterMap` object which contains attributes that
provide information about the clustering result.
"""

print("Nb. clusters:", len(clusters))
print("Cluster sizes:", map(len, clusters))
print("Small clusters:", clusters < 10)
print("Streamlines indices of the first cluster:\n", clusters[0].indices)
print("Centroid of the last cluster:\n", clusters[-1].centroid)

"""
开发者ID:StongeEtienne,项目名称:dipy,代码行数:30,代码来源:segment_quickbundles.py


注:本文中的dipy.segment.clustering.QuickBundles类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。