本文整理汇总了Python中dipy.segment.clustering.QuickBundles.cluster方法的典型用法代码示例。如果您正苦于以下问题:Python QuickBundles.cluster方法的具体用法?Python QuickBundles.cluster怎么用?Python QuickBundles.cluster使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类dipy.segment.clustering.QuickBundles
的用法示例。
在下文中一共展示了QuickBundles.cluster方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_quickbundles_with_python_metric
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import cluster [as 别名]
def test_quickbundles_with_python_metric():
class MDFpy(dipymetric.Metric):
def are_compatible(self, shape1, shape2):
return shape1 == shape2
def dist(self, features1, features2):
dist = np.sqrt(np.sum((features1 - features2)**2, axis=1))
dist = np.sum(dist / len(features1))
return dist
rdata = streamline_utils.set_number_of_points(data, 10)
qb = QuickBundles(threshold=2 * threshold, metric=MDFpy())
clusters = qb.cluster(rdata)
# By default `refdata` refers to data being clustered.
assert_equal(clusters.refdata, rdata)
# Set `refdata` to return indices instead of actual data points.
clusters.refdata = None
assert_array_equal(list(itertools.chain(*clusters)),
list(itertools.chain(*clusters_truth)))
# Cluster read-only data
for datum in rdata:
datum.setflags(write=False)
# Cluster data with different dtype (should be converted into float32)
for datatype in [np.float64, np.int32, np.int64]:
newdata = [datum.astype(datatype) for datum in rdata]
clusters = qb.cluster(newdata)
assert_equal(clusters.centroids[0].dtype, np.float32)
示例2: test_quickbundles_memory_leaks
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import cluster [as 别名]
def test_quickbundles_memory_leaks():
qb = QuickBundles(threshold=2*threshold)
type_name_pattern = "memoryview"
initial_types_refcount = get_type_refcount(type_name_pattern)
qb.cluster(data)
# At this point, all memoryviews created during clustering should be freed.
assert_equal(get_type_refcount(type_name_pattern), initial_types_refcount)
示例3: bench_quickbundles
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import cluster [as 别名]
def bench_quickbundles():
dtype = "float32"
repeat = 10
nb_points = 12
streams, hdr = nib.trackvis.read(get_fnames('fornix'))
fornix = [s[0].astype(dtype) for s in streams]
fornix = streamline_utils.set_number_of_points(fornix, nb_points)
# Create eight copies of the fornix to be clustered (one in each octant).
streamlines = []
streamlines += [s + np.array([100, 100, 100], dtype) for s in fornix]
streamlines += [s + np.array([100, -100, 100], dtype) for s in fornix]
streamlines += [s + np.array([100, 100, -100], dtype) for s in fornix]
streamlines += [s + np.array([100, -100, -100], dtype) for s in fornix]
streamlines += [s + np.array([-100, 100, 100], dtype) for s in fornix]
streamlines += [s + np.array([-100, -100, 100], dtype) for s in fornix]
streamlines += [s + np.array([-100, 100, -100], dtype) for s in fornix]
streamlines += [s + np.array([-100, -100, -100], dtype) for s in fornix]
# The expected number of clusters of the fornix using threshold=10 is 4.
threshold = 10.
expected_nb_clusters = 4 * 8
print("Timing QuickBundles 1.0 vs. 2.0")
qb2 = QB_New(threshold)
qb2_time = measure("clusters = qb2.cluster(streamlines)", repeat)
print("QuickBundles2 time: {0:.4}sec".format(qb2_time))
print("Speed up of {0}x".format(qb1_time / qb2_time))
clusters = qb2.cluster(streamlines)
sizes2 = map(len, clusters)
indices2 = map(lambda c: c.indices, clusters)
assert_equal(len(clusters), expected_nb_clusters)
assert_array_equal(list(sizes2), sizes1)
assert_arrays_equal(indices2, indices1)
qb = QB_New(threshold, metric=MDFpy())
qb3_time = measure("clusters = qb.cluster(streamlines)", repeat)
print("QuickBundles2_python time: {0:.4}sec".format(qb3_time))
print("Speed up of {0}x".format(qb1_time / qb3_time))
clusters = qb.cluster(streamlines)
sizes3 = map(len, clusters)
indices3 = map(lambda c: c.indices, clusters)
assert_equal(len(clusters), expected_nb_clusters)
assert_array_equal(list(sizes3), sizes1)
assert_arrays_equal(indices3, indices1)
示例4: main
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import cluster [as 别名]
def main():
parser = buildArgsParser()
args = parser.parse_args()
full_tfile = nib.streamlines.load(args.full_tfile)
model_tfile = nib.streamlines.load(args.model_tfile)
model_mask = nib.load(args.model_mask)
# Bring streamlines to voxel space and where coordinate (0,0,0) represents the corner of a voxel.
model_tfile.tractogram.apply_affine(np.linalg.inv(model_mask.affine))
model_tfile.streamlines._data += 0.5 # Shift of half a voxel
full_tfile.tractogram.apply_affine(np.linalg.inv(model_mask.affine))
full_tfile.streamlines._data += 0.5 # Shift of half a voxel
assert(model_mask.get_data().sum() == create_binary_map(model_tfile.streamlines, model_mask).sum())
# Resample streamlines
full_streamlines = set_number_of_points(full_tfile.streamlines, args.nb_points_resampling)
model_streamlines = set_number_of_points(model_tfile.streamlines, args.nb_points_resampling)
# Segment model
rng = np.random.RandomState(42)
indices = np.arange(len(model_streamlines))
rng.shuffle(indices)
qb = QuickBundles(args.qb_threshold)
clusters = qb.cluster(model_streamlines, ordering=indices)
# Try to find optimal assignment threshold
best_threshold = None
best_f1_score = -np.inf
thresholds = np.arange(-2, 10, 0.2) + args.qb_threshold
for threshold in thresholds:
indices = qb.find_closest(clusters, full_streamlines, threshold=threshold)
nb_assignments = np.sum(indices != -1)
mask = create_binary_map(full_tfile.streamlines[indices != -1], model_mask)
overlap_per_bundle = _compute_overlap(model_mask.get_data(), mask)
overreach_per_bundle = _compute_overreach(model_mask.get_data(), mask)
# overreach_norm_gt_per_bundle = _compute_overreach_normalize_gt(model_mask.get_data(), mask)
f1_score = _compute_f1_score(overlap_per_bundle, overreach_per_bundle)
if best_f1_score < f1_score:
best_threshold = threshold
best_f1_score = f1_score
print("{}:\t {}/{} ({:.1%}) {:.1%}/{:.1%} ({:.1%}) {}/{}".format(
threshold,
nb_assignments, len(model_streamlines), nb_assignments/len(model_streamlines),
overlap_per_bundle, overreach_per_bundle, f1_score,
mask.sum(), model_mask.get_data().sum()))
if overlap_per_bundle >= 1:
break
print("Best threshold: {} with F1-Score of {}".format(best_threshold, best_f1_score))
示例5: test_quickbundles_with_not_order_invariant_metric
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import cluster [as 别名]
def test_quickbundles_with_not_order_invariant_metric():
metric = dipymetric.AveragePointwiseEuclideanMetric()
qb = QuickBundles(threshold=np.inf, metric=metric)
streamline = np.arange(10*3, dtype=dtype).reshape((-1, 3))
streamlines = [streamline, streamline[::-1]]
clusters = qb.cluster(streamlines)
assert_equal(len(clusters), 1)
assert_array_equal(clusters[0].centroid, streamline)
示例6: test_quickbundles_shape_uncompatibility
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import cluster [as 别名]
def test_quickbundles_shape_uncompatibility():
# QuickBundles' old default metric (AveragePointwiseEuclideanMetric, aka MDF)
# requires that all streamlines have the same number of points.
metric = dipymetric.AveragePointwiseEuclideanMetric()
qb = QuickBundles(threshold=20., metric=metric)
assert_raises(ValueError, qb.cluster, data)
# QuickBundles' new default metric (AveragePointwiseEuclideanMetric, aka MDF
# combined with ResampleFeature) will automatically resample streamlines so
# they all have 18 points.
qb = QuickBundles(threshold=20.)
clusters1 = qb.cluster(data)
feature = dipymetric.ResampleFeature(nb_points=18)
metric = dipymetric.AveragePointwiseEuclideanMetric(feature)
qb = QuickBundles(threshold=20., metric=metric)
clusters2 = qb.cluster(data)
assert_array_equal(list(itertools.chain(*clusters1)), list(itertools.chain(*clusters2)))
示例7: test_quickbundles_streamlines
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import cluster [as 别名]
def test_quickbundles_streamlines():
rdata = streamline_utils.set_number_of_points(data, 10)
qb = QuickBundles(threshold=2*threshold)
clusters = qb.cluster(rdata)
# By default `refdata` refers to data being clustered.
assert_equal(clusters.refdata, rdata)
# Set `refdata` to return indices instead of actual data points.
clusters.refdata = None
assert_array_equal(list(itertools.chain(*clusters)),
list(itertools.chain(*clusters_truth)))
# Cluster read-only data
for datum in rdata:
datum.setflags(write=False)
# Cluster data with different dtype (should be converted into float32)
for datatype in [np.float64, np.int32, np.int64]:
newdata = [datum.astype(datatype) for datum in rdata]
clusters = qb.cluster(newdata)
assert_equal(clusters.centroids[0].dtype, np.float32)
示例8: _prepare_gt_bundles_info
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import cluster [as 别名]
def _prepare_gt_bundles_info(bundles_dir, bundles_masks_dir,
gt_bundles_attribs, ref_anat_fname):
# Ref bundles will contain {'name': 'name_of_the_bundle',
# 'threshold': thres_value,
# 'streamlines': list_of_streamlines}
dummy_attribs = {'orientation': 'LPS'}
qb = QuickBundles(20, metric=AveragePointwiseEuclideanMetric())
ref_bundles = []
for bundle_idx, bundle_f in enumerate(sorted(os.listdir(bundles_dir))):
bundle_name = os.path.splitext(os.path.basename(bundle_f))[0]
bundle_attribs = gt_bundles_attribs.get(os.path.basename(bundle_f))
if bundle_attribs is None:
raise ValueError(
"Missing basic bundle attribs for {0}".format(bundle_f))
# Already resample to avoid doing it for each iteration of chunking
orig_strl = [s for s in get_tracts_voxel_space_for_dipy(
os.path.join(bundles_dir, bundle_f),
ref_anat_fname, dummy_attribs)]
resamp_bundle = set_number_of_points(orig_strl, NB_POINTS_RESAMPLE)
resamp_bundle = [s.astype('f4') for s in resamp_bundle]
bundle_cluster_map = qb.cluster(resamp_bundle)
bundle_cluster_map.refdata = resamp_bundle
bundle_mask = nib.load(os.path.join(bundles_masks_dir,
bundle_name + '.nii.gz'))
ref_bundles.append({'name': bundle_name,
'threshold': bundle_attribs['cluster_threshold'],
'cluster_map': bundle_cluster_map,
'mask': bundle_mask})
return ref_bundles
示例9: bundle_analysis
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import cluster [as 别名]
def bundle_analysis(model_bundle_folder, bundle_folder, orig_bundle_folder,
metric_folder, group, subject, no_disks=100,
out_dir=''):
"""
Applies statistical analysis on bundles and saves the results
in a directory specified by ``out_dir``.
Parameters
----------
model_bundle_folder : string
Path to the input model bundle files. This path may contain
wildcards to process multiple inputs at once.
bundle_folder : string
Path to the input bundle files in common space. This path may
contain wildcards to process multiple inputs at once.
orig_folder : string
Path to the input bundle files in native space. This path may
contain wildcards to process multiple inputs at once.
metric_folder : string
Path to the input dti metric or/and peak files. It will be used as
metric for statistical analysis of bundles.
group : string
what group subject belongs to e.g. control or patient
subject : string
subject id e.g. 10001
no_disks : integer, optional
Number of disks used for dividing bundle into disks. (Default 100)
out_dir : string, optional
Output directory (default input file directory)
References
----------
.. [Chandio19] Chandio, B.Q., S. Koudoro, D. Reagan, J. Harezlak,
E. Garyfallidis, Bundle Analytics: a computational and statistical
analyses framework for tractometric studies, Proceedings of:
International Society of Magnetic Resonance in Medicine (ISMRM),
Montreal, Canada, 2019.
"""
dt = dict()
mb = os.listdir(model_bundle_folder)
mb.sort()
bd = os.listdir(bundle_folder)
bd.sort()
org_bd = os.listdir(orig_bundle_folder)
org_bd.sort()
n = len(org_bd)
for io in range(n):
mbundles, _ = load_trk(os.path.join(model_bundle_folder, mb[io]))
bundles, _ = load_trk(os.path.join(bundle_folder, bd[io]))
orig_bundles, _ = load_trk(os.path.join(orig_bundle_folder,
org_bd[io]))
mbundle_streamlines = set_number_of_points(mbundles,
nb_points=no_disks)
metric = AveragePointwiseEuclideanMetric()
qb = QuickBundles(threshold=25., metric=metric)
clusters = qb.cluster(mbundle_streamlines)
centroids = Streamlines(clusters.centroids)
print('Number of centroids ', len(centroids.data))
print('Model bundle ', mb[io])
print('Number of streamlines in bundle in common space ',
len(bundles))
print('Number of streamlines in bundle in original space ',
len(orig_bundles))
_, indx = cKDTree(centroids.data, 1,
copy_data=True).query(bundles.data, k=1)
metric_files_names = os.listdir(metric_folder)
_, affine = load_nifti(os.path.join(metric_folder, "fa.nii.gz"))
affine_r = np.linalg.inv(affine)
transformed_orig_bundles = transform_streamlines(orig_bundles,
affine_r)
for mn in range(0, len(metric_files_names)):
ind = np.array(indx)
fm = metric_files_names[mn][:2]
bm = mb[io][:-4]
dt = dict()
metric_name = os.path.join(metric_folder,
metric_files_names[mn])
if metric_files_names[mn][2:] == '.nii.gz':
metric, _ = load_nifti(metric_name)
dti_measures(transformed_orig_bundles, metric, dt, fm,
bm, subject, group, ind, out_dir)
else:
fm = metric_files_names[mn][:3]
metric = load_peaks(metric_name)
peak_values(bundles, metric, dt, fm, bm, subject, group,
#.........这里部分代码省略.........
示例10: points
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import cluster [as 别名]
streams, hdr = tv.read(fname)
streamlines = [i[0] for i in streams]
"""
Perform QuickBundles clustering using the MDF metric and a 10mm distance
threshold. Keep in mind that since the MDF metric requires streamlines to have
the same number of points, the clustering algorithm will internally use a
representation of streamlines that have been automatically downsampled/upsampled
so they have only 12 points (To set manually the number of points,
see :ref:`clustering-examples-ResampleFeature`).
"""
qb = QuickBundles(threshold=10.)
clusters = qb.cluster(streamlines)
"""
`clusters` is a `ClusterMap` object which contains attributes that
provide information about the clustering result.
"""
print("Nb. clusters:", len(clusters))
print("Cluster sizes:", map(len, clusters))
print("Small clusters:", clusters < 10)
print("Streamlines indices of the first cluster:\n", clusters[0].indices)
print("Centroid of the last cluster:\n", clusters[-1].centroid)
"""
::
示例11: score_from_files
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import cluster [as 别名]
def score_from_files(filename, masks_dir, bundles_dir,
tracts_attribs, basic_bundles_attribs,
save_segmented=False, save_IBs=False,
save_VBs=False, save_VCWPs=False,
segmented_out_dir='', segmented_base_name='',
verbose=False):
"""
Computes all metrics in order to score a tractogram.
Given a ``tck`` file of streamlines and a folder containing masks,
compute the percent of: Valid Connections (VC), Invalid Connections (IC),
Valid Connections but Wrong Path (VCWP), No Connections (NC),
Average Bundle Coverage (ABC), Average ROIs Coverage (ARC),
coverage per bundles and coverage per ROIs. It also provides the number of:
Valid Bundles (VB), Invalid Bundles (IB) and streamlines per bundles.
Parameters
------------
filename : str
name of a tracts file
masks_dir : str
name of the directory containing the masks
save_segmented : bool
if true, saves the segmented VC, IC, VCWP and NC
Returns
---------
scores : dict
dictionnary containing a score for each metric
indices : dict
dictionnary containing the indices of streamlines composing VC, IC,
VCWP and NC
"""
if verbose:
logging.basicConfig(level=logging.DEBUG)
rois_dir = masks_dir + "rois/"
bundles_masks_dir = masks_dir + "bundles/"
wm_file = masks_dir + "wm.nii.gz"
wm = nib.load(wm_file)
streamlines = load_streamlines(filename, wm_file, tracts_attribs)
ROIs = [nib.load(rois_dir + f) for f in sorted(os.listdir(rois_dir))]
bundles_masks = [nib.load(bundles_masks_dir + f) for f in sorted(os.listdir(bundles_masks_dir))]
ref_bundles = []
# Ref bundles will contain {'name': 'name_of_the_bundle', 'threshold': thres_value,
# 'streamlines': list_of_streamlines}
dummy_attribs = {'orientation': 'LPS'}
qb = QuickBundles(threshold=REF_BUNDLES_THRESHOLD, metric=AveragePointwiseEuclideanMetric())
out_centroids_dir = os.path.join(segmented_out_dir, os.path.pardir, "centroids")
if not os.path.isdir(out_centroids_dir):
os.mkdir(out_centroids_dir)
rng = np.random.RandomState(42)
for bundle_idx, bundle_f in enumerate(sorted(os.listdir(bundles_dir))):
bundle_attribs = basic_bundles_attribs.get(os.path.basename(bundle_f))
if bundle_attribs is None:
raise ValueError("Missing basic bundle attribs for {0}".format(bundle_f))
# # Already resample to avoid doing it for each iteration of chunking
# orig_strl = [s for s in get_tracts_voxel_space_for_dipy(
# os.path.join(bundles_dir, bundle_f),
# wm_file, dummy_attribs)]
orig_strl = load_streamlines(os.path.join(bundles_dir, bundle_f), wm_file, dummy_attribs)
resamp_bundle = set_number_of_points(orig_strl, NB_POINTS_RESAMPLE)
# resamp_bundle = [s.astype('f4') for s in resamp_bundle]
indices = np.arange(len(resamp_bundle))
rng.shuffle(indices)
bundle_cluster_map = qb.cluster(resamp_bundle, ordering=indices)
# bundle_cluster_map.refdata = resamp_bundle
bundle_mask_inv = nib.Nifti1Image((1 - bundles_masks[bundle_idx].get_data()) * wm.get_data(),
bundles_masks[bundle_idx].get_affine())
ref_bundles.append({'name': os.path.basename(bundle_f).replace('.fib', '').replace('.tck', ''),
'threshold': bundle_attribs['cluster_threshold'],
'cluster_map': bundle_cluster_map,
'mask': bundles_masks[bundle_idx],
'mask_inv': bundle_mask_inv})
logging.debug("{}: {} centroids".format(ref_bundles[-1]['name'], len(bundle_cluster_map)))
nib.streamlines.save(nib.streamlines.Tractogram(bundle_cluster_map.centroids, affine_to_rasmm=np.eye(4)),
os.path.join(out_centroids_dir, ref_bundles[-1]['name'] + ".tck"))
score_func = score_auto_extract_auto_IBs
return score_func(streamlines, bundles_masks, ref_bundles, ROIs, wm,
save_segmented=save_segmented, save_IBs=save_IBs,
save_VBs=save_VBs, save_VCWPs=save_VCWPs,
out_segmented_strl_dir=segmented_out_dir,
base_out_segmented_strl=segmented_base_name,
ref_anat_fname=wm_file)
示例12: import
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import cluster [as 别名]
from dipy.segment.metric import (AveragePointwiseEuclideanMetric,
ResampleFeature)
from dipy.segment.clustering import QuickBundles
feature = ResampleFeature(nb_points=100)
metric = AveragePointwiseEuclideanMetric(feature)
"""
Since we are going to include all of the streamlines in the single cluster
from the streamlines, we set the threshold to `np.inf`. We pull out the
centroid as the standard.
"""
qb = QuickBundles(np.inf, metric=metric)
cluster_cst_l = qb.cluster(model_cst_l)
standard_cst_l = cluster_cst_l.centroids[0]
cluster_af_l = qb.cluster(model_af_l)
standard_af_l = cluster_af_l.centroids[0]
"""
We use the centroid streamline for each atlas bundle as the standard to orient
all of the streamlines in each bundle from the individual subject. Here, the
affine used is the one from the transform between the atlas and individual
tractogram. This is so that the orienting is done relative to the space of the
individual, and not relative to the atlas space.
"""
import dipy.tracking.streamline as dts
示例13: auto_extract_VCs
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import cluster [as 别名]
def auto_extract_VCs(streamlines, ref_bundles):
# Streamlines = list of all streamlines
VC = 0
VC_idx = set()
found_vbs_info = {}
for bundle in ref_bundles:
found_vbs_info[bundle['name']] = {'nb_streamlines': 0,
'streamlines_indices': set()}
# Need to bookkeep because we chunk for big datasets
processed_strl_count = 0
chunk_size = 5000
chunk_it = 0
nb_bundles = len(ref_bundles)
bundles_found = [False] * nb_bundles
logging.debug("Starting scoring VCs")
qb = QuickBundles(threshold=20, metric=AveragePointwiseEuclideanMetric())
# Start loop here for big datasets
while processed_strl_count < len(streamlines):
logging.debug("Starting chunk: {0}".format(chunk_it))
strl_chunk = streamlines[chunk_it * chunk_size:
(chunk_it + 1) * chunk_size]
processed_strl_count += len(strl_chunk)
cur_chunk_VC_idx, cur_chunk_IC_idx, cur_chunk_VCWP_idx = set(), set(), set()
# Already resample and run quickbundles on the submission chunk,
# to avoid doing it at every call of auto_extract
rstreamlines = set_number_of_points(strl_chunk, NB_POINTS_RESAMPLE)
# qb.cluster had problem with f8
rstreamlines = [s.astype('f4') for s in rstreamlines]
chunk_cluster_map = qb.cluster(rstreamlines)
chunk_cluster_map.refdata = strl_chunk
logging.debug("Starting VC identification through auto_extract")
for bundle_idx, ref_bundle in enumerate(ref_bundles):
# The selected indices are from [0, len(strl_chunk)]
selected_streamlines_indices = auto_extract(ref_bundle['cluster_map'],
chunk_cluster_map,
clean_thr=ref_bundle['threshold'])
# Remove duplicates, when streamlines are assigned to multiple VBs.
selected_streamlines_indices = set(selected_streamlines_indices) - \
cur_chunk_VC_idx
cur_chunk_VC_idx |= selected_streamlines_indices
nb_selected_streamlines = len(selected_streamlines_indices)
if nb_selected_streamlines:
bundles_found[bundle_idx] = True
VC += nb_selected_streamlines
# Shift indices to match the real number of streamlines
global_select_strl_indices = set([v + chunk_it * chunk_size
for v in selected_streamlines_indices])
vb_info = found_vbs_info.get(ref_bundle['name'])
vb_info['nb_streamlines'] += nb_selected_streamlines
vb_info['streamlines_indices'] |= global_select_strl_indices
VC_idx |= global_select_strl_indices
else:
global_select_strl_indices = set()
chunk_it += 1
# Compute bundle overlap, overreach and f1_scores and update found_vbs_info
for bundle_idx, ref_bundle in enumerate(ref_bundles):
bundle_name = ref_bundle["name"]
bundle_mask = ref_bundle["mask"]
vb_info = found_vbs_info[bundle_name]
# Streamlines are in voxel space since that's how they were
# loaded in the scoring function.
tractogram = Tractogram(streamlines=(streamlines[i] for i in vb_info['streamlines_indices']),
affine_to_rasmm=bundle_mask.affine)
scores = {}
if len(tractogram) > 0:
scores = compute_bundle_coverage_scores(tractogram, bundle_mask)
vb_info['overlap'] = scores.get("OL", 0)
vb_info['overreach'] = scores.get("OR", 0)
vb_info['overreach_norm'] = scores.get("ORn", 0)
vb_info['f1_score'] = scores.get("F1", 0)
return VC_idx, found_vbs_info
示例14: QuickBundles
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import cluster [as 别名]
"""
Fiber clustering
----------------
Based on an agglomerative clustering, and a geometric distance.
"""
clustering_outdir = os.path.join(outdir, "clustering")
cluster_file = os.path.join(clustering_outdir, "clusters.json")
if not os.path.isdir(clustering_outdir):
os.mkdir(clustering_outdir)
if not os.path.isfile(cluster_file):
fibers_18 = [resample(track, nb_pol=18) for track in fibers]
qb = QuickBundles(threshold=10.)
clusters_ = qb.cluster(fibers_18)
clusters = {}
for cnt, cluster in enumerate(clusters_):
clusters[str(cnt)] = {"indices": cluster.indices}
with open(cluster_file, "w") as open_file:
json.dump(clusters, open_file, indent=4)
else:
with open(cluster_file) as open_file:
clusters = json.load(open_file)
if 1: #use_vtk:
ren = pvtk.ren()
colors = numpy.ones((len(fibers),))
nb_clusters = len(clusters)
for clusterid, item in clusters.items():
indices = item["indices"]
示例15: slr_with_qb
# 需要导入模块: from dipy.segment.clustering import QuickBundles [as 别名]
# 或者: from dipy.segment.clustering.QuickBundles import cluster [as 别名]
def slr_with_qb(static, moving,
x0='affine',
rm_small_clusters=50,
maxiter=100,
select_random=None,
verbose=False,
greater_than=50,
less_than=250,
qb_thr=15,
nb_pts=20,
progressive=True, num_threads=None):
""" Utility function for registering large tractograms.
For efficiency we apply the registration on cluster centroids and remove
small clusters.
Parameters
----------
static : Streamlines
moving : Streamlines
x0 : str
rigid, similarity or affine transformation model (default affine)
rm_small_clusters : int
Remove clusters that have less than `rm_small_clusters` (default 50)
verbose : bool,
If True then information about the optimization is shown.
select_random : int
If not None select a random number of streamlines to apply clustering
Default None.
options : None or dict,
Extra options to be used with the selected method.
num_threads : int
Number of threads. If None (default) then all available threads
will be used. Only metrics using OpenMP will use this variable.
Notes
-----
The order of operations is the following. First short or long streamlines
are removed. Second the tractogram or a random selection of the tractogram
is clustered with QuickBundles. Then SLR [Garyfallidis15]_ is applied.
References
----------
.. [Garyfallidis15] Garyfallidis et al. "Robust and efficient linear
registration of white-matter fascicles in the space of streamlines"
, NeuroImage, 117, 124--140, 2015
.. [Garyfallidis14] Garyfallidis et al., "Direct native-space fiber
bundle alignment for group comparisons", ISMRM, 2014.
.. [Garyfallidis17] Garyfallidis et al. Recognition of white matter
bundles using local and global streamline-based registration and
clustering, Neuroimage, 2017.
"""
if verbose:
print('Static streamlines size {}'.format(len(static)))
print('Moving streamlines size {}'.format(len(moving)))
def check_range(streamline, gt=greater_than, lt=less_than):
if (length(streamline) > gt) & (length(streamline) < lt):
return True
else:
return False
# TODO change this to the new Streamlines API
streamlines1 = [s for s in static if check_range(s)]
streamlines2 = [s for s in moving if check_range(s)]
if verbose:
print('Static streamlines after length reduction {}'
.format(len(streamlines1)))
print('Moving streamlines after length reduction {}'
.format(len(streamlines2)))
if select_random is not None:
rstreamlines1 = select_random_set_of_streamlines(streamlines1,
select_random)
else:
rstreamlines1 = streamlines1
rstreamlines1 = set_number_of_points(rstreamlines1, nb_pts)
qb1 = QuickBundles(threshold=qb_thr)
rstreamlines1 = [s.astype('f4') for s in rstreamlines1]
cluster_map1 = qb1.cluster(rstreamlines1)
clusters1 = remove_clusters_by_size(cluster_map1, rm_small_clusters)
qb_centroids1 = [cluster.centroid for cluster in clusters1]
if select_random is not None:
rstreamlines2 = select_random_set_of_streamlines(streamlines2,
select_random)
else:
rstreamlines2 = streamlines2
rstreamlines2 = set_number_of_points(rstreamlines2, nb_pts)
qb2 = QuickBundles(threshold=qb_thr)
#.........这里部分代码省略.........