当前位置: 首页>>代码示例>>Python>>正文


Python GraphUtils.loadProperties方法代码示例

本文整理汇总了Python中dipper.utils.GraphUtils.GraphUtils.loadProperties方法的典型用法代码示例。如果您正苦于以下问题:Python GraphUtils.loadProperties方法的具体用法?Python GraphUtils.loadProperties怎么用?Python GraphUtils.loadProperties使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在dipper.utils.GraphUtils.GraphUtils的用法示例。


在下文中一共展示了GraphUtils.loadProperties方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _process_genes

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadProperties [as 别名]
    def _process_genes(self, taxid, limit=None):
        gu = GraphUtils(curie_map.get())

        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        geno = Genotype(g)

        raw = '/'.join((self.rawdir, self.files[taxid]['file']))
        line_counter = 0
        logger.info("Processing Ensembl genes for tax %s", taxid)
        with open(raw, 'r', encoding="utf8") as csvfile:
            filereader = csv.reader(csvfile, delimiter='\t')
            for row in filereader:
                if len(row) < 4:
                    logger.error("Data error for file %s", raw)
                    return
                (ensembl_gene_id, external_gene_name, description,
                 gene_biotype, entrezgene) = row[0:5]

                # in the case of human genes, we also get the hgnc id,
                # and is the last col
                if taxid == '9606':
                    hgnc_id = row[5]
                else:
                    hgnc_id = None

                if self.testMode and entrezgene != '' \
                        and int(entrezgene) not in self.gene_ids:
                    continue

                line_counter += 1
                gene_id = 'ENSEMBL:'+ensembl_gene_id
                if description == '':
                    description = None
                gene_type_id = self._get_gene_type(gene_biotype)
                gene_type_id = None
                gu.addClassToGraph(
                    g, gene_id, external_gene_name, gene_type_id, description)

                if entrezgene != '':
                    gu.addEquivalentClass(g, gene_id, 'NCBIGene:'+entrezgene)
                if hgnc_id is not None and hgnc_id != '':
                    gu.addEquivalentClass(g, gene_id, hgnc_id)
                geno.addTaxon('NCBITaxon:'+taxid, gene_id)

                if not self.testMode \
                        and limit is not None and line_counter > limit:
                    break

        gu.loadProperties(g, Feature.object_properties, gu.OBJPROP)
        gu.loadProperties(g, Feature.data_properties, gu.DATAPROP)
        gu.loadProperties(g, Genotype.object_properties, gu.OBJPROP)
        gu.loadAllProperties(g)

        return
开发者ID:JervenBolleman,项目名称:dipper,代码行数:60,代码来源:Ensembl.py

示例2: parse

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadProperties [as 别名]
    def parse(self, limit=None):
        """
        MPD data is delivered in four separate csv files and one xml file,
        which we process iteratively and write out as
        one large graph.

        :param limit:
        :return:
        """
        if limit is not None:
            logger.info("Only parsing first %s rows fo each file", str(limit))

        logger.info("Parsing files...")

        if self.testOnly:
            self.testMode = True
            g = self.testgraph
            self.geno = Genotype(self.testgraph)
        else:
            g = self.graph

        self._process_straininfo(limit)
        # the following will provide us the hash-lookups
        # These must be processed in a specific order

        # mapping between assays and ontology terms
        self._process_ontology_mappings_file(limit)
        # this is the metadata about the measurements
        self._process_measurements_file(limit)
        # get all the measurements per strain
        self._process_strainmeans_file(limit)

        # The following will use the hash populated above
        # to lookup the ids when filling in the graph
        self._fill_provenance_graph(limit)

        logger.info("Finished parsing.")

        self.load_bindings()

        gu = GraphUtils(curie_map.get())
        gu.loadAllProperties(g)
        gu.loadProperties(g, G2PAssoc.object_properties, GraphUtils.OBJPROP)
        gu.loadProperties(g, G2PAssoc.datatype_properties, GraphUtils.OBJPROP)
        gu.loadProperties(
            g, G2PAssoc.annotation_properties, GraphUtils.ANNOTPROP)

        logger.info("Found %d nodes", len(self.graph))
        return
开发者ID:JervenBolleman,项目名称:dipper,代码行数:51,代码来源:MPD.py

示例3: _process_phenotype_data

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadProperties [as 别名]

#.........这里部分代码省略.........
                                       geno.genoparts['variant_locus'])
                        vl_set.add(vl_id)
                        if len(variants) == 1 and len(genes) == 1:
                            for gene in genes:
                                geno.addAlleleOfGene(vl_id, gene)
                        else:
                            geno.addAllele(vl_id, vl_symbol)
                else:  # len(vars) == 0
                    # it's just anonymous variants in some gene
                    for gene in genes:
                        vl_id = '_'+gene+'-VL'
                        vl_id = re.sub(r':', '', vl_id)
                        if self.nobnodes:
                            vl_id = ':'+vl_id
                        vl_symbol = self.id_label_hash[gene]+'<?>'
                        self.id_label_hash[vl_id] = vl_symbol
                        geno.addAllele(vl_id, vl_symbol,
                                       geno.genoparts['variant_locus'])
                        geno.addGene(gene, self.id_label_hash[gene])
                        geno.addAlleleOfGene(vl_id, gene)
                        vl_set.add(vl_id)

                # make the vslcs
                vl_list = sorted(vl_set)
                vslc_list = []
                for vl in vl_list:
                    # for unknown zygosity
                    vslc_id = '_'+re.sub(r'^_', '', vl)+'U'
                    vslc_id = re.sub(r':', '', vslc_id)
                    if self.nobnodes:
                        vslc_id = ':' + vslc_id
                    vslc_label = self.id_label_hash[vl] + '/?'
                    self.id_label_hash[vslc_id] = vslc_label
                    vslc_list.append(vslc_id)
                    geno.addPartsToVSLC(
                        vslc_id, vl, None, geno.zygosity['indeterminate'],
                        geno.object_properties['has_alternate_part'], None)
                    gu.addIndividualToGraph(
                        g, vslc_id, vslc_label,
                        geno.genoparts['variant_single_locus_complement'])
                if len(vslc_list) > 0:
                    if len(vslc_list) > 1:
                        gvc_id = '-'.join(vslc_list)
                        gvc_id = re.sub(r':', '', gvc_id)
                        if self.nobnodes:
                            gvc_id = ':'+gvc_id
                        gvc_label = \
                            '; '.join(self.id_label_hash[v] for v in vslc_list)
                        gu.addIndividualToGraph(
                            g, gvc_id, gvc_label,
                            geno.genoparts['genomic_variation_complement'])
                        for vslc_id in vslc_list:
                            geno.addVSLCtoParent(vslc_id, gvc_id)
                    else:
                        # the GVC == VSLC, so don't have to make an extra piece
                        gvc_id = vslc_list.pop()
                        gvc_label = self.id_label_hash[gvc_id]

                    genotype_label = gvc_label + ' [n.s.]'
                    bkgd_id = \
                        '_' + re.sub(r':', '', '-'.join(
                            (geno.genoparts['unspecified_genomic_background'],
                             s)))
                    genotype_id = '-'.join((gvc_id, bkgd_id))
                    if self.nobnodes:
                        bkgd_id = ':'+bkgd_id
                    geno.addTaxon(mouse_taxon, bkgd_id)
                    geno.addGenomicBackground(
                        bkgd_id, 'unspecified ('+s+')',
                        geno.genoparts['unspecified_genomic_background'],
                        "A placeholder for the " +
                        "unspecified genetic background for "+s)
                    geno.addGenomicBackgroundToGenotype(
                        bkgd_id, genotype_id,
                        geno.genoparts['unspecified_genomic_background'])
                    geno.addParts(
                        gvc_id, genotype_id,
                        geno.object_properties['has_alternate_part'])
                    geno.addGenotype(genotype_id, genotype_label)
                    gu.addTriple(
                        g, s, geno.object_properties['has_genotype'],
                        genotype_id)
                else:
                    # logger.debug(
                    #   "Strain %s is not making a proper genotype.", s)
                    pass

            gu.loadProperties(
                g, G2PAssoc.object_properties, G2PAssoc.OBJECTPROP)
            gu.loadProperties(
                g, G2PAssoc.datatype_properties, G2PAssoc.DATAPROP)
            gu.loadProperties(
                g, G2PAssoc.annotation_properties, G2PAssoc.ANNOTPROP)
            gu.loadAllProperties(g)

            logger.warning(
                "The following gene symbols did not list identifiers: %s",
                str(sorted(list(genes_with_no_ids))))

        return
开发者ID:JervenBolleman,项目名称:dipper,代码行数:104,代码来源:MMRRC.py

示例4: Feature

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadProperties [as 别名]

#.........这里部分代码省略.........

        return

    def addPositionToGraph(
            self, graph, reference_id, position,
            position_types=None, strand=None):
        """
        Add the positional information to the graph, following the faldo model.
        We assume that if the strand is None,
            we give it a generic "Position" only.
        Triples:
        my_position a (any of: faldo:(((Both|Plus|Minus)Strand)|Exact)Position)
            faldo:position Integer(numeric position)
            faldo:reference reference_id

        :param graph:
        :param reference_id:
        :param position:
        :param position_types:
        :param strand:
        :return:  Identifier of the position created
        """

        iid = self._makePositionId(reference_id, position, position_types)
        n = self.gu.getNode(iid)
        pos = self.gu.getNode(self.properties['position'])
        ref = self.gu.getNode(self.properties['reference'])
        if position is not None:
            graph.add((n, pos, Literal(position, datatype=XSD['integer'])))
        graph.add((n, ref, self.gu.getNode(reference_id)))
        if position_types is not None:
            for t in position_types:
                graph.add((n, RDF['type'], self.gu.getNode(t)))
        s = None
        if strand is not None:
            s = strand
            if not re.match(r'faldo', strand):
                # not already mapped to faldo, so expect we need to map it
                s = self._getStrandType(strand)
        # else:
        #    s = self.types['both_strand']
        if s is None and (position_types is None or position_types == []):
            s = self.types['Position']

        if s is not None:
            graph.add((n, RDF['type'], self.gu.getNode(s)))

        return iid

    def addSubsequenceOfFeature(self, graph, parentid):
        """
        This will add reciprocal triples like:
        feature is_subsequence_of parent
        parent has_subsequence feature
        :param graph:
        :param parentid:
        :return:
        """
        self.gu.addTriple(
            graph, self.id, self.properties['is_subsequence_of'], parentid)
        self.gu.addTriple(
            graph, parentid, self.properties['has_subsequence'], self.id)

        return

    def addTaxonToFeature(self, graph, taxonid):
        """
        Given the taxon id, this will add the following triple:
        feature in_taxon taxonid
        :param graph:
        :param taxonid:
        :return:
        """
        # TEC: should taxon be set in __init__()?
        self.taxon = taxonid
        self.gu.addTriple(
            graph, self.id, Assoc.properties['in_taxon'], self.taxon)

        return

    def loadAllProperties(self, graph):

        prop_dict = {
            Assoc(None).ANNOTPROP: self.annotation_properties,
            Assoc(None).OBJECTPROP: self.object_properties,
            Assoc(None).DATAPROP: self.data_properties
        }

        for p in prop_dict:
            self.gu.loadProperties(graph, prop_dict.get(p), p)

        return

    def addFeatureProperty(self, graph, property_type, property):
        self.gu.addTriple(graph, self.id, property_type, property)
        return

    def setNoBNodes(self, nobnodes):
        self.nobnodes = nobnodes
        return
开发者ID:JervenBolleman,项目名称:dipper,代码行数:104,代码来源:GenomicFeature.py

示例5: Genotype

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadProperties [as 别名]

#.........这里部分代码省略.........
        'feature_to_gene_relation': 'GENO:0000418'
    }

    annotation_properties = {
        # TODO change properties with https://github.com/monarch-initiative/GENO-ontology/issues/21
        'reference_nucleotide': 'GENO:reference_nucleotide',  # Made up term
        'reference_amino_acid': 'GENO:reference_amino_acid',  # Made up term
        'altered_nucleotide': 'GENO:altered_nucleotide',  # Made up term
        'results_in_amino_acid_change': 'GENO:results_in_amino_acid_change'  # Made up term
    }

    zygosity = {
        'homoplasmic': 'GENO:0000602',
        'heterozygous': 'GENO:0000135',
        'indeterminate': 'GENO:0000137',
        'heteroplasmic': 'GENO:0000603',
        'hemizygous-y': 'GENO:0000604',
        'hemizygous-x': 'GENO:0000605',
        'homozygous': 'GENO:0000136',
        'hemizygous': 'GENO:0000606',
        'complex_heterozygous': 'GENO:0000402',
        'simple_heterozygous': 'GENO:0000458'
    }

    properties = object_properties.copy()
    properties.update(annotation_properties)

    def __init__(self, graph):

        self.gu = GraphUtils(curie_map.get())

        self.graph = graph

        self.gu.loadProperties(self.graph, self.object_properties, self.gu.OBJPROP)

        return

    def addGenotype(self, genotype_id, genotype_label, genotype_type=None, genotype_description=None):
        """
        If a genotype_type is not supplied, we will default to 'intrinsic_genotype'
        :param genotype_id:
        :param genotype_label:
        :param genotype_type:
        :param genotype_description:
        :return:
        """
        if genotype_type is None:
            genotype_type = self.genoparts['intrinsic_genotype']

        self.gu.addIndividualToGraph(self.graph, genotype_id, genotype_label, genotype_type, genotype_description)

        return

    def addAllele(self, allele_id, allele_label, allele_type=None, allele_description=None):
        """
        Make an allele object. If no allele_type is added, it will default to a geno:allele
        :param allele_id: curie for allele (required)
        :param allele_label: label for allele (required)
        :param allele_type: id for an allele type (optional, recommended SO or GENO class)
        :param allele_description: a free-text description of the allele
        :return:
        """
        # TODO should we accept a list of allele types?
        if (allele_type is None):
            allele_type = self.genoparts['allele']  #TODO is this a good idea?
        self.gu.addIndividualToGraph(self.graph, allele_id, allele_label, allele_type, allele_description)
开发者ID:d3borah,项目名称:dipper,代码行数:70,代码来源:Genotype.py

示例6: _process_diseasegene

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadProperties [as 别名]

#.........这里部分代码省略.........
                gene_iid_to_type = {}
                gene_list = elem.find('GeneList')
                for gene in gene_list.findall('Gene'):
                    gene_iid = gene.get('id')
                    gene_type = gene.find('GeneType').get('id')
                    gene_iid_to_type[gene_iid] = gene_type

                # assuming that these are in the ontology
                gu.addClassToGraph(g, disorder_id, disorder_label)

                assoc_list = elem.find('DisorderGeneAssociationList')
                for a in assoc_list.findall('DisorderGeneAssociation'):
                    gene_iid = a.find('.//Gene').get('id')
                    gene_name = a.find('.//Gene/Name').text
                    gene_symbol = a.find('.//Gene/Symbol').text
                    gene_num = a.find('./Gene/OrphaNumber').text
                    gene_id = 'Orphanet:'+str(gene_num)
                    gene_type_id = \
                        self._map_gene_type_id(gene_iid_to_type[gene_iid])
                    gu.addClassToGraph(
                        g, gene_id, gene_symbol, gene_type_id, gene_name)
                    syn_list = a.find('./Gene/SynonymList')
                    if int(syn_list.get('count')) > 0:
                        for s in syn_list.findall('./Synonym'):
                            gu.addSynonym(g, gene_id, s.text)

                    dgtype = a.find('DisorderGeneAssociationType').get('id')
                    rel_id = self._map_rel_id(dgtype)
                    dg_label = \
                        a.find('./DisorderGeneAssociationType/Name').text
                    if rel_id is None:
                        logger.warning(
                            "Cannot map association type (%s) to RO " +
                            "for association (%s | %s).  Skipping.",
                            dg_label, disorder_label, gene_symbol)
                        continue

                    alt_locus_id = '_'+gene_num+'-'+disorder_num+'VL'
                    alt_label = \
                        ' '.join(('some variant of', gene_symbol.strip(),
                                  'that is a', dg_label.lower(),
                                  disorder_label))
                    if self.nobnodes:
                        alt_locus_id = ':'+alt_locus_id
                    gu.addIndividualToGraph(g, alt_locus_id, alt_label,
                                            geno.genoparts['variant_locus'])
                    geno.addAlleleOfGene(alt_locus_id, gene_id)

                    # consider typing the gain/loss-of-function variants like:
                    # http://sequenceontology.org/browser/current_svn/term/SO:0002054
                    # http://sequenceontology.org/browser/current_svn/term/SO:0002053

                    # use "assessed" status to issue an evidence code
                    # FIXME I think that these codes are sub-optimal
                    status_code = \
                        a.find('DisorderGeneAssociationStatus').get('id')
                    # imported automatically asserted information
                    # used in automatic assertion
                    eco_id = 'ECO:0000323'
                    # Assessed
                    # TODO are these internal ids stable between releases?
                    if status_code == '17991':
                        # imported manually asserted information
                        # used in automatic assertion
                        eco_id = 'ECO:0000322'
                    # Non-traceable author statement ECO_0000034
                    # imported information in automatic assertion ECO_0000313

                    assoc = G2PAssoc(self.name, alt_locus_id,
                                     disorder_id, rel_id)
                    assoc.add_evidence(eco_id)
                    assoc.add_association_to_graph(g)

                    rlist = a.find('./Gene/ExternalReferenceList')
                    eqid = None

                    for r in rlist.findall('ExternalReference'):
                        if r.find('Source').text == 'Ensembl':
                            eqid = 'ENSEMBL:'+r.find('Reference').text
                        elif r.find('Source').text == 'HGNC':
                            eqid = 'HGNC:'+r.find('Reference').text
                        elif r.find('Source').text == 'OMIM':
                            eqid = 'OMIM:'+r.find('Reference').text
                        else:
                            pass  # skip the others for now
                        if eqid is not None:
                            gu.addClassToGraph(g, eqid, None)
                            gu.addEquivalentClass(g, gene_id, eqid)
                elem.clear()  # discard the element

            if self.testMode and limit is not None and line_counter > limit:
                return

        gu.loadProperties(
            g, G2PAssoc.annotation_properties, G2PAssoc.ANNOTPROP)
        gu.loadProperties(g, G2PAssoc.datatype_properties, G2PAssoc.DATAPROP)
        gu.loadProperties(g, G2PAssoc.object_properties, G2PAssoc.OBJECTPROP)
        gu.loadAllProperties(g)

        return
开发者ID:JervenBolleman,项目名称:dipper,代码行数:104,代码来源:Orphanet.py

示例7: _process_diseasegene

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadProperties [as 别名]

#.........这里部分代码省略.........
                # get the element name and id
                # id = elem.get('id') # some internal identifier
                disorder_num = elem.find("OrphaNumber").text

                disorder_id = "Orphanet:" + str(disorder_num)

                if self.testMode and disorder_id not in config.get_config()["test_ids"]["disease"]:
                    continue

                disorder_label = elem.find("Name").text

                # make a hash of internal gene id to type for later lookup
                gene_iid_to_type = {}
                gene_list = elem.find("GeneList")
                for gene in gene_list.findall("Gene"):
                    gene_iid = gene.get("id")
                    gene_type = gene.find("GeneType").get("id")
                    gene_iid_to_type[gene_iid] = gene_type

                gu.addClassToGraph(g, disorder_id, disorder_label)  # assuming that these are in the ontology

                assoc_list = elem.find("DisorderGeneAssociationList")
                for a in assoc_list.findall("DisorderGeneAssociation"):
                    gene_iid = a.find(".//Gene").get("id")
                    gene_name = a.find(".//Gene/Name").text
                    gene_symbol = a.find(".//Gene/Symbol").text
                    gene_num = a.find("./Gene/OrphaNumber").text
                    gene_id = "Orphanet:" + str(gene_num)
                    gene_type_id = self._map_gene_type_id(gene_iid_to_type[gene_iid])
                    gu.addClassToGraph(g, gene_id, gene_symbol, gene_type_id, gene_name)
                    syn_list = a.find("./Gene/SynonymList")
                    if int(syn_list.get("count")) > 0:
                        for s in syn_list.findall("./Synonym"):
                            gu.addSynonym(g, gene_id, s.text)

                    dgtype = a.find("DisorderGeneAssociationType").get("id")
                    rel_id = self._map_rel_id(dgtype)
                    dg_label = a.find("./DisorderGeneAssociationType/Name").text
                    if rel_id is None:
                        logger.warn(
                            "Cannot map association type (%s) to RO for association (%s | %s).  Skipping.",
                            dg_label,
                            disorder_label,
                            gene_symbol,
                        )
                        continue

                    alt_locus_id = "_" + gene_num + "-" + disorder_num + "VL"
                    alt_label = " ".join(
                        ("some variant of", gene_symbol.strip(), "that is a", dg_label.lower(), disorder_label)
                    )
                    if self.nobnodes:
                        alt_locus_id = ":" + alt_locus_id
                    gu.addIndividualToGraph(g, alt_locus_id, alt_label, geno.genoparts["variant_locus"])
                    geno.addAlleleOfGene(alt_locus_id, gene_id)

                    # consider typing the gain/loss-of-function variants like:
                    # http://sequenceontology.org/browser/current_svn/term/SO:0002054
                    # http://sequenceontology.org/browser/current_svn/term/SO:0002053

                    # use "assessed" status to issue an evidence code
                    # FIXME I think that these codes are sub-optimal
                    status_code = a.find("DisorderGeneAssociationStatus").get("id")
                    eco_id = "ECO:0000323"  # imported automatically asserted information used in automatic assertion
                    if status_code == "17991":  # Assessed  # TODO are these internal ids stable between releases?
                        eco_id = "ECO:0000322"  # imported manually asserted information used in automatic assertion
                    # Non-traceable author statement ECO_0000034
                    # imported information in automatic assertion ECO_0000313

                    assoc = G2PAssoc(self.name, alt_locus_id, disorder_id, rel_id)
                    assoc.add_evidence(eco_id)
                    assoc.add_association_to_graph(g)

                    rlist = a.find("./Gene/ExternalReferenceList")
                    eqid = None

                    for r in rlist.findall("ExternalReference"):
                        if r.find("Source").text == "Ensembl":
                            eqid = "ENSEMBL:" + r.find("Reference").text
                        elif r.find("Source").text == "HGNC":
                            eqid = "HGNC:" + r.find("Reference").text
                        elif r.find("Source").text == "OMIM":
                            eqid = "OMIM:" + r.find("Reference").text
                        else:
                            pass  # skip the others for now
                        if eqid is not None:
                            gu.addClassToGraph(g, eqid, None)
                            gu.addEquivalentClass(g, gene_id, eqid)
                            pass
                elem.clear()  # discard the element

            if self.testMode and limit is not None and line_counter > limit:
                return

        gu.loadProperties(g, G2PAssoc.annotation_properties, G2PAssoc.ANNOTPROP)
        gu.loadProperties(g, G2PAssoc.datatype_properties, G2PAssoc.DATAPROP)
        gu.loadProperties(g, G2PAssoc.object_properties, G2PAssoc.OBJECTPROP)
        gu.loadAllProperties(g)

        return
开发者ID:d3borah,项目名称:dipper,代码行数:104,代码来源:Orphanet.py

示例8: _get_gene_info

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadProperties [as 别名]

#.........这里部分代码省略.........
                # TODO might have to figure out if things aren't genes, and make them individuals
                gu.addClassToGraph(g, gene_id, label, gene_type_id, desc)

                # we have to do special things here for genes, because they're classes not individuals
                # f = Feature(gene_id,label,gene_type_id,desc)

                if name != '-':
                    gu.addSynonym(g, gene_id, name)
                if synonyms.strip() != '-':
                    for s in synonyms.split('|'):
                        gu.addSynonym(g, gene_id, s.strip(), Assoc.annotation_properties['hasRelatedSynonym'])
                if other_designations.strip() != '-':
                    for s in other_designations.split('|'):
                        gu.addSynonym(g, gene_id, s.strip(), Assoc.annotation_properties['hasRelatedSynonym'])

                # deal with the xrefs
                # MIM:614444|HGNC:HGNC:16851|Ensembl:ENSG00000136828|HPRD:11479|Vega:OTTHUMG00000020696
                if xrefs.strip() != '-':
                    for r in xrefs.strip().split('|'):
                        fixedr = self._cleanup_id(r)
                        if fixedr is not None and fixedr.strip() != '':
                            if re.match('HPRD', fixedr):
                                # proteins are not == genes.
                                gu.addTriple(g, gene_id, self.properties['has_gene_product'], fixedr)
                            else:
                                # skip some of these for now
                                if fixedr.split(':')[0] not in ['Vega', 'IMGT/GENE-DB']:
                                    gu.addEquivalentClass(g, gene_id, fixedr)

                # edge cases of id | symbol | chr | map_loc:
                # 263     AMD1P2    X|Y  with   Xq28 and Yq12
                # 438     ASMT      X|Y  with   Xp22.3 or Yp11.3    # in PAR
                # 419     ART3      4    with   4q21.1|4p15.1-p14   # no idea why there's two bands listed - possibly 2 assemblies
                # 28227   PPP2R3B   X|Y  Xp22.33; Yp11.3            # in PAR
                # 619538  OMS     10|19|3 10q26.3;19q13.42-q13.43;3p25.3   #this is of "unknown" type == susceptibility
                # 101928066       LOC101928066    1|Un    -         # unlocated scaffold
                # 11435   Chrna1  2       2 C3|2 43.76 cM           # mouse --> 2C3
                # 11548   Adra1b  11      11 B1.1|11 25.81 cM       # mouse --> 11B1.1
                # 11717   Ampd3   7       7 57.85 cM|7 E2-E3        # mouse
                # 14421   B4galnt1        10      10 D3|10 74.5 cM  # mouse
                # 323212  wu:fb92e12      19|20   -                 # fish
                # 323368  ints10  6|18    -                         # fish
                # 323666  wu:fc06e02      11|23   -                 # fish

                # feel that the chr placement can't be trusted in this table when there is > 1 listed
                # with the exception of human X|Y, i will only take those that align to one chr

                # FIXME remove the chr mapping below when we pull in the genomic coords
                if str(chr) != '-' and str(chr) != '':
                    if re.search('\|', str(chr)) and str(chr) not in ['X|Y','X; Y']:
                        # this means that there's uncertainty in the mapping.  skip it
                        # TODO we'll need to figure out how to deal with >1 loc mapping
                        logger.info('%s is non-uniquely mapped to %s.  Skipping for now.', gene_id, str(chr))
                        continue
                        # X|Y	Xp22.33;Yp11.3

                    # if (not re.match('(\d+|(MT)|[XY]|(Un)$',str(chr).strip())):
                    #    print('odd chr=',str(chr))
                    if str(chr) == 'X; Y':
                        chr = 'X|Y'  # rewrite the PAR regions for processing
                    # do this in a loop to allow PAR regions like X|Y
                    for c in re.split('\|',str(chr)) :
                        geno.addChromosomeClass(c, tax_id, None)  # assume that the chromosome label will get added elsewhere
                        mychrom = makeChromID(c, tax_num, 'CHR')
                        mychrom_syn = makeChromLabel(c, tax_num)  # temporarily use the taxnum for the disambiguating label
                        gu.addSynonym(g, mychrom,  mychrom_syn)
                        band_match = re.match('[0-9A-Z]+[pq](\d+)?(\.\d+)?$', map_loc)
                        if band_match is not None and len(band_match.groups()) > 0:
                            # if tax_num != '9606':
                            #     continue
                            # this matches the regular kind of chrs, so make that kind of band
                            # not sure why this matches? chrX|Y or 10090chr12|Un"
                            # TODO we probably need a different regex per organism
                            # the maploc_id already has the numeric chromosome in it, strip it first
                            bid = re.sub('^'+c, '', map_loc)
                            maploc_id = makeChromID(c+bid, tax_num, 'CHR')  # the generic location (no coordinates)
                            # print(map_loc,'-->',bid,'-->',maploc_id)
                            band = Feature(maploc_id, None, None)  # Assume it's type will be added elsewhere
                            band.addFeatureToGraph(g)
                            # add the band as the containing feature
                            gu.addTriple(g, gene_id, Feature.object_properties['is_subsequence_of'], maploc_id)
                        else:
                            # TODO handle these cases
                            # examples are: 15q11-q22, Xp21.2-p11.23, 15q22-qter, 10q11.1-q24,
                            ## 12p13.3-p13.2|12p13-p12, 1p13.3|1p21.3-p13.1,  12cen-q21, 22q13.3|22q13.3
                            logger.debug('not regular band pattern for %s: %s', gene_id, map_loc)
                            # add the gene as a subsequence of the chromosome
                            gu.addTriple(g, gene_id, Feature.object_properties['is_subsequence_of'], mychrom)

                geno.addTaxon(tax_id, gene_id)

                if not self.testMode and limit is not None and line_counter > limit:
                    break

            gu.loadProperties(g, Feature.object_properties, gu.OBJPROP)
            gu.loadProperties(g, Feature.data_properties, gu.DATAPROP)
            gu.loadProperties(g, Genotype.object_properties, gu.OBJPROP)
            gu.loadAllProperties(g)

        return
开发者ID:d3borah,项目名称:dipper,代码行数:104,代码来源:NCBIGene.py

示例9: _process_data

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadProperties [as 别名]

#.........这里部分代码省略.........
                    # can change later if desired.
                    # since the genotype is reflective of the place
                    # it got made, should put that in to disambiguate
                    genotype_name = \
                        genotype_name+' ['+pheno_center_strain_label+']'
                    geno.addGenomicBackgroundToGenotype(
                        pheno_center_strain_id, genotype_id)
                    geno.addTaxon(pheno_center_strain_id, taxon_id)
                # this is redundant, but i'll keep in in for now
                geno.addSequenceDerivesFrom(genotype_id, colony_id)
                genotype_name += '['+colony+']'
                geno.addGenotype(genotype_id, genotype_name)

                # Make the sex-qualified genotype,
                # which is what the phenotype is associated with
                sex_qualified_genotype_id = \
                    self.make_id(
                        (colony_id + phenotyping_center + zygosity +
                         strain_accession_id+sex))
                sex_qualified_genotype_label = genotype_name+' ('+sex+')'
                if sex == 'male':
                    sq_type_id = geno.genoparts['male_genotype']
                elif sex == 'female':
                    sq_type_id = geno.genoparts['female_genotype']
                else:
                    sq_type_id = geno.genoparts['sex_qualified_genotype']

                geno.addGenotype(
                    sex_qualified_genotype_id,
                    sex_qualified_genotype_label, sq_type_id)
                geno.addParts(
                    genotype_id, sex_qualified_genotype_id,
                    geno.object_properties['has_alternate_part'])

                if genomic_background_id is not None and \
                        genomic_background_id != '':
                    # Add the taxon to the genomic_background_id
                    geno.addTaxon(taxon_id, genomic_background_id)
                else:
                    # add it as the genomic background
                    geno.addTaxon(taxon_id, genotype_id)

                # #############    BUILD THE G2P ASSOC    #############
                # from an old email dated July 23 2014:
                # Phenotypes associations are made to
                # imits colony_id+center+zygosity+gender

                phenotype_id = mp_term_id

                # it seems that sometimes phenotype ids are missing.
                # indicate here
                if phenotype_id is None or phenotype_id == '':
                    logger.warning(
                        "No phenotype id specified for row %d: %s",
                        line_counter, str(row))
                    continue
                # experimental_phenotypic_evidence This was used in ZFIN
                eco_id = "ECO:0000059"

                # the association comes as a result of a g2p from
                # a procedure in a pipeline at a center and parameter tested

                assoc = G2PAssoc(self.name, sex_qualified_genotype_id,
                                 phenotype_id)
                assoc.add_evidence(eco_id)
                # assoc.set_score(float(p_value))

                # TODO add evidence instance using
                # pipeline_stable_id +
                # procedure_stable_id +
                # parameter_stable_id

                assoc.add_association_to_graph(g)
                assoc_id = assoc.get_association_id()

                # add a free-text description
                description = \
                    ' '.join((mp_term_name, 'phenotype determined by',
                              phenotyping_center, 'in an',
                              procedure_name, 'assay where',
                              parameter_name.strip(),
                              'was measured with an effect_size of',
                              str(round(float(effect_size), 5)),
                              '(p =', "{:.4e}".format(float(p_value)), ').'))

                gu.addDescription(g, assoc_id, description)

                # TODO add provenance information
                # resource_id = resource_name
                # assoc.addSource(g, assoc_id, resource_id)

                if not self.testMode and \
                        limit is not None and line_counter > limit:
                    break

        gu.loadProperties(g, G2PAssoc.object_properties, gu.OBJPROP)
        gu.loadProperties(g, G2PAssoc.annotation_properties, gu.ANNOTPROP)
        gu.loadProperties(g, G2PAssoc.datatype_properties, gu.DATAPROP)

        return
开发者ID:JervenBolleman,项目名称:dipper,代码行数:104,代码来源:IMPC.py

示例10: UCSCBands

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadProperties [as 别名]

#.........这里部分代码省略.........
        self.testgraph = self.graph
        logger.info("Found %d nodes", len(self.graph))
        logger.info("Done parsing files.")

        return

    def _get_chrbands(self, limit, taxon):
        """
        :param limit:
        :return:

        """

        # TODO PYLINT figure out what limit was for and why it is unused
        line_counter = 0
        myfile = '/'.join((self.rawdir, self.files[taxon]['file']))
        logger.info("Processing Chr bands from FILE: %s", myfile)
        geno = Genotype(self.graph)
        monochrom = Monochrom()

        # used to hold band definitions for a chr
        # in order to compute extent of encompasing bands

        mybands = {}
        # build the organism's genome from the taxon
        genome_label = self.files[taxon]['genome_label']
        taxon_id = 'NCBITaxon:'+taxon

        # add the taxon as a class.  adding the class label elsewhere
        self.gu.addClassToGraph(self.graph, taxon_id, None)
        self.gu.addSynonym(self.graph, taxon_id, genome_label)

        self.gu.loadObjectProperties(self.graph, Feature.object_properties)
        self.gu.loadProperties(self.graph, Feature.data_properties,
                               self.gu.DATAPROP)
        self.gu.loadAllProperties(self.graph)

        geno.addGenome(taxon_id, genome_label)

        # add the build and the taxon it's in
        build_num = self.files[taxon]['build_num']
        build_id = 'UCSC:'+build_num
        geno.addReferenceGenome(build_id, build_num, taxon_id)

        # process the bands
        with gzip.open(myfile, 'rb') as f:
            for line in f:
                # skip comments
                line = line.decode().strip()
                if re.match('^#', line):
                    continue

                # chr13	4500000	10000000	p12	stalk
                (scaffold, start, stop, band_num, rtype) = line.split('\t')
                line_counter += 1

                # NOTE some less-finished genomes have
                # placed and unplaced scaffolds
                # * Placed scaffolds:
                #       the scaffolds have been placed within a chromosome.
                # * Unlocalized scaffolds:
                #       although the chromosome within which the scaffold occurs
                #       is known, the scaffold's position or orientation
                #       is not known.
                # * Unplaced scaffolds:
                #       it is not known which chromosome the scaffold belongs to
开发者ID:JervenBolleman,项目名称:dipper,代码行数:70,代码来源:UCSCBands.py

示例11: _process_genes

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadProperties [as 别名]
    def _process_genes(self, limit=None):
        gu = GraphUtils(curie_map.get())

        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        geno = Genotype(g)

        raw = '/'.join((self.rawdir, self.files['genes']['file']))
        line_counter = 0
        logger.info("Processing HGNC genes")

        with open(raw, 'r', encoding="utf8") as csvfile:
            filereader = csv.reader(csvfile, delimiter='\t', quotechar='\"')
            for row in filereader:
                (hgnc_id, symbol, name, locus_group, locus_type, status,
                 location, location_sortable, alias_symbol, alias_name,
                 prev_symbol, prev_name, gene_family, gene_family_id,
                 date_approved_reserved, date_symbol_changed,
                 date_name_changed, date_modified, entrez_id, ensembl_gene_id,
                 vega_id, ucsc_id, ena, refseq_accession, ccds_id, uniprot_ids,
                 pubmed_id, mgd_id, rgd_id, lsdb, cosmic, omim_id, mirbase,
                 homeodb, snornabase, bioparadigms_slc, orphanet,
                 pseudogene_org, horde_id, merops, imgt, iuphar,
                 kznf_gene_catalog, mamit_trnadb, cd, lncrnadb, enzyme_id,
                 intermediate_filament_db) = row

                line_counter += 1

                # skip header
                if line_counter <= 1:
                    continue

                if self.testMode and entrez_id != '' \
                        and int(entrez_id) not in self.gene_ids:
                    continue

                if name == '':
                    name = None
                gene_type_id = self._get_gene_type(locus_type)
                gu.addClassToGraph(g, hgnc_id, symbol, gene_type_id, name)
                if locus_type == 'withdrawn':
                    gu.addDeprecatedClass(g, hgnc_id)
                if entrez_id != '':
                    gu.addEquivalentClass(
                        g, hgnc_id, 'NCBIGene:' + entrez_id)
                if ensembl_gene_id != '':
                    gu.addEquivalentClass(
                        g, hgnc_id, 'ENSEMBL:' + ensembl_gene_id)
                geno.addTaxon('NCBITaxon:9606', hgnc_id)

                # add pubs as "is about"
                if pubmed_id != '':
                    for p in re.split(r'\|', pubmed_id.strip()):
                        if str(p) != '':
                            gu.addTriple(
                                g, 'PMID:' + str(p.strip()),
                                gu.object_properties['is_about'], hgnc_id)

                # add chr location
                # sometimes two are listed, like: 10p11.2 or 17q25
                # -- there are only 2 of these FRA10A and MPFD
                # sometimes listed like "1 not on reference assembly"
                # sometimes listed like 10q24.1-q24.3
                # sometimes like 11q11 alternate reference locus
                band = chrom = None
                chr_pattern = r'(\d+|X|Y|Z|W|MT)[pq$]'
                chr_match = re.match(chr_pattern, location)
                if chr_match is not None and len(chr_match.groups()) > 0:
                    chrom = chr_match.group(1)
                    chrom_id = makeChromID(chrom, 'NCBITaxon:9606', 'CHR')
                    band_pattern = r'([pq][A-H\d]?\d?(?:\.\d+)?)'
                    band_match = re.search(band_pattern, location)
                    f = Feature(hgnc_id, None, None)
                    if band_match is not None and len(band_match.groups()) > 0:
                        band = band_match.group(1)
                        band = chrom + band
                        # add the chr band as the parent to this gene
                        # as a feature but assume that the band is created
                        # as a class with properties elsewhere in Monochrom
                        # TEC Monoch? Monarchdom??
                        band_id = makeChromID(band, 'NCBITaxon:9606', 'CHR')
                        gu.addClassToGraph(g, band_id, None)
                        f.addSubsequenceOfFeature(g, band_id)
                    else:
                        gu.addClassToGraph(g, chrom_id, None)
                        f.addSubsequenceOfFeature(g, chrom_id)

                if not self.testMode \
                        and limit is not None and line_counter > limit:
                    break

            # end loop through file

        gu.loadProperties(g, Feature.object_properties, gu.OBJPROP)
        gu.loadProperties(g, Feature.data_properties, gu.DATAPROP)
        gu.loadProperties(g, Genotype.object_properties, gu.OBJPROP)
        gu.loadAllProperties(g)
#.........这里部分代码省略.........
开发者ID:JervenBolleman,项目名称:dipper,代码行数:103,代码来源:HGNC.py

示例12: _get_variants

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadProperties [as 别名]

#.........这里部分代码省略.........
                # CHECK - this makes the assumption that there is only one affected chromosome per variant
                # what happens with chromosomal rearrangement variants?  shouldn't both chromosomes be here?

                # add the hgvs as synonyms
                if hgvs_c != '-' and hgvs_c.strip() != '':
                    gu.addSynonym(g, seqalt_id, hgvs_c)
                if hgvs_p != '-' and hgvs_p.strip() != '':
                    gu.addSynonym(g, seqalt_id, hgvs_p)

                # add the dbsnp and dbvar ids as equivalent
                if dbsnp_num != '-' and int(dbsnp_num) != -1:
                    dbsnp_id = 'dbSNP:rs'+str(dbsnp_num)
                    gu.addIndividualToGraph(g, dbsnp_id, None)
                    gu.addSameIndividual(g, seqalt_id, dbsnp_id)
                if dbvar_num != '-':
                    dbvar_id = 'dbVar:'+dbvar_num
                    gu.addIndividualToGraph(g, dbvar_id, None)
                    gu.addSameIndividual(g, seqalt_id, dbvar_id)

                # TODO - not sure if this is right... add as xref?
                # the rcv is like the combo of the phenotype with the variant
                if rcv_nums != '-':
                    for rcv_num in re.split(';',rcv_nums):
                        rcv_id = 'ClinVar:'+rcv_num
                        gu.addIndividualToGraph(g, rcv_id, None)
                        gu.addXref(g, seqalt_id, rcv_id)

                if gene_id is not None:
                    # add the gene
                    gu.addClassToGraph(g, gene_id, gene_symbol)
                    # make a variant locus
                    vl_id = '_'+gene_num+'-'+variant_num
                    if self.nobnodes:
                        vl_id = ':'+vl_id
                    vl_label = allele_name
                    gu.addIndividualToGraph(g, vl_id, vl_label, geno.genoparts['variant_locus'])
                    geno.addSequenceAlterationToVariantLocus(seqalt_id, vl_id)
                    geno.addAlleleOfGene(vl_id, gene_id)
                else:
                    # some basic reporting
                    gmatch = re.search('\(\w+\)', allele_name)
                    if gmatch is not None and len(gmatch.groups()) > 0:
                        logger.info("Gene found in allele label, but no id provided: %s", gmatch.group(1))
                    elif re.match('more than 10', gene_symbol):
                        logger.info("More than 10 genes found; need to process XML to fetch (variant=%d)", int(variant_num))
                    else:
                        logger.info("No gene listed for variant %d", int(variant_num))

                # parse the list of "phenotypes" which are diseases.  add them as an association
                # ;GeneReviews:NBK1440,MedGen:C0392514,OMIM:235200,SNOMED CT:35400008;MedGen:C3280096,OMIM:614193;MedGen:CN034317,OMIM:612635;MedGen:CN169374
                # the list is both semicolon delimited and comma delimited, but i don't know why!
                # some are bad, like: Orphanet:ORPHA ORPHA319705,SNOMED CT:49049000
                if phenotype_ids != '-':
                    for p in pheno_list:
                        m = re.match("(Orphanet:ORPHA(?:\s*ORPHA)?)", p)
                        if m is not None and len(m.groups()) > 0:
                            p = re.sub(m.group(1), 'Orphanet:', p.strip())
                        elif re.match('SNOMED CT', p):
                            p = re.sub('SNOMED CT', 'SNOMED', p.strip())

                        assoc = G2PAssoc(self.name, seqalt_id, p.strip())
                        assoc.add_association_to_graph(g)

                if other_ids != '-':
                    id_list = other_ids.split(',')
                    # process the "other ids"
                    # ex: CFTR2:F508del,HGMD:CD890142,OMIM Allelic Variant:602421.0001
                    # TODO make more xrefs
                    for xrefid in id_list:
                        prefix = xrefid.split(':')[0].strip()
                        if prefix == 'OMIM Allelic Variant':
                            xrefid = 'OMIM:'+xrefid.split(':')[1]
                            gu.addIndividualToGraph(g, xrefid, None)
                            gu.addSameIndividual(g, seqalt_id, xrefid)
                        elif prefix == 'HGMD':
                            gu.addIndividualToGraph(g, xrefid, None)
                            gu.addSameIndividual(g, seqalt_id, xrefid)
                        elif prefix == 'dbVar' and dbvar_num == xrefid.split(':')[1].strip():
                            pass  # skip over this one
                        elif re.search('\s', prefix):
                            pass
                            # logger.debug('xref prefix has a space: %s', xrefid)
                        else:
                            # should be a good clean prefix
                            # note that HGMD variants are in here as Xrefs because we can't resolve URIs for them
                            # logger.info("Adding xref: %s", xrefid)
                            # gu.addXref(g, seqalt_id, xrefid)
                            # logger.info("xref prefix to add: %s", xrefid)
                            pass

                if not self.testMode and limit is not None and line_counter > limit:
                    break

        gu.loadProperties(g, G2PAssoc.object_properties, gu.OBJPROP)
        gu.loadProperties(g, G2PAssoc.annotation_properties, gu.ANNOTPROP)
        gu.loadProperties(g, G2PAssoc.datatype_properties, gu.DATAPROP)

        logger.info("Finished parsing variants")

        return
开发者ID:d3borah,项目名称:dipper,代码行数:104,代码来源:ClinVar.py

示例13: _get_orthologs

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadProperties [as 别名]

#.........这里部分代码省略.........

        for k in self.files.keys():
            f = '/'.join((self.rawdir, self.files[k]['file']))
            matchcounter = 0
            mytar = tarfile.open(f, 'r:gz')

            # assume that the first entry is the item
            fname = mytar.getmembers()[0]
            logger.info("Parsing %s", fname.name)
            line_counter = 0
            with mytar.extractfile(fname) as csvfile:
                for line in csvfile:
                    # skip comment lines
                    if re.match('^#', line.decode()):
                        logger.info("Skipping header line")
                        continue
                    line_counter += 1

                    # a little feedback to the user since there's so many
                    if line_counter % 1000000 == 0:
                        logger.info("Processed %d lines from %s", line_counter, fname.name)

                    line = line.decode().strip()

                    # parse each row
                    # HUMAN|Ensembl=ENSG00000184730|UniProtKB=Q0VD83	MOUSE|MGI=MGI=2176230|UniProtKB=Q8VBT6	LDO	Euarchontoglires	PTHR15964
                    (a, b, orthology_class, ancestor_taxon, panther_id) = line.split('\t')
                    (species_a, gene_a, protein_a) = a.split('|')
                    (species_b, gene_b, protein_b) = b.split('|')

                    # skip the entries that don't have homolog relationships with the test ids
                    if self.testMode and not (re.sub('UniProtKB=', '', protein_a) in self.test_ids or
                                              re.sub('UniProtKB=', '', protein_b) in self.test_ids):
                        continue

                    # map the taxon abbreviations to ncbi taxon ids
                    taxon_a = self._map_taxon_abbr_to_id(species_a)
                    taxon_b = self._map_taxon_abbr_to_id(species_b)

                    # ###uncomment the following code block if you want to filter based on taxid
                    # taxids = [9606,10090,10116,7227,7955,6239,8355]  #our favorite animals
                    # taxids = [9606] #human only
                    # retain only those orthologous relationships to genes in the specified taxids
                    # using AND will get you only those associations where gene1 AND gene2 are in the taxid list (most-filter)
                    # using OR will get you any associations where gene1 OR gene2 are in the taxid list (some-filter)
                    if (self.tax_ids is not None and
                        (int(re.sub('NCBITaxon:', '', taxon_a.rstrip())) not in self.tax_ids) and
                            (int(re.sub('NCBITaxon:', '', taxon_b.rstrip())) not in self.tax_ids)):
                        continue
                    else:
                        matchcounter += 1
                        if limit is not None and matchcounter > limit:
                            break

                    # ###end code block for filtering on taxon

                    # fix the gene identifiers
                    gene_a = re.sub('=', ':', gene_a)
                    gene_b = re.sub('=', ':', gene_b)

                    clean_gene = self._clean_up_gene_id(gene_a, species_a)
                    if clean_gene is None:
                        unprocessed_gene_ids.add(gene_a)
                    gene_a = clean_gene
                    clean_gene = self._clean_up_gene_id(gene_b, species_b)
                    if clean_gene is None:
                        unprocessed_gene_ids.add(gene_b)
                    gene_b = clean_gene

                    # a special case here; mostly some rat genes they use symbols instead of identifiers.  will skip
                    if gene_a is None or gene_b is None:
                        continue

                    rel = self._map_orthology_code_to_RO(orthology_class)

                    evidence_id = 'ECO:0000080'  # phylogenetic evidence

                    # add the association and relevant nodes to graph
                    assoc = OrthologyAssoc(self.name, gene_a, gene_b, rel)
                    assoc.add_evidence(evidence_id)

                    # add genes to graph; assume labels will be taken care of elsewhere
                    gu.addClassToGraph(g, gene_a, None)
                    gu.addClassToGraph(g, gene_b, None)

                    assoc.add_association_to_graph(g)

                    # note this is incomplete... it won't construct the full family hierarchy, just the top-grouping
                    assoc.add_gene_family_to_graph(g, ':'.join(('PANTHER', panther_id)))

                    if not self.testMode and limit is not None and line_counter > limit:
                        break

            logger.info("finished processing %s", f)
            logger.warn("The following gene ids were unable to be processed: %s", str(unprocessed_gene_ids))

        gu.loadProperties(g, OrthologyAssoc.object_properties, gu.OBJPROP)
        gu.loadProperties(g, OrthologyAssoc.annotation_properties, gu.ANNOTPROP)

        return
开发者ID:d3borah,项目名称:dipper,代码行数:104,代码来源:Panther.py

示例14: CTD

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadProperties [as 别名]

#.........这里部分代码省略.........
            :param limit (int, optional) limit the number of rows processed
        Returns:
            :return None
        """
        if limit is not None:
            logger.info("Only parsing first %d rows", limit)

        logger.info("Parsing files...")
        # pub_map = dict()
        # file_path = '/'.join((self.rawdir,
        # self.static_files['publications']['file']))
        # if os.path.exists(file_path) is True:
        #     pub_map = self._parse_publication_file(
        #         self.static_files['publications']['file']
        #     )

        if self.testOnly:
            self.testMode = True

        if self.testMode:
            self.g = self.testgraph
        else:
            self.g = self.graph
        self.geno = Genotype(self.g)
        self.path = Pathway(self.g, self.nobnodes)

        self._parse_ctd_file(
            limit, self.files['chemical_disease_interactions']['file'])
        self._parse_ctd_file(limit, self.files['gene_pathway']['file'])
        self._parse_ctd_file(limit, self.files['gene_disease']['file'])
        self._parse_curated_chem_disease(limit)
        self.gu.loadAllProperties(self.g)

        self.gu.loadProperties(
            self.g, G2PAssoc.object_properties, self.gu.OBJPROP)
        self.gu.loadProperties(
            self.g, G2PAssoc.datatype_properties, self.gu.DATAPROP)
        self.gu.loadProperties(
            self.g, G2PAssoc.annotation_properties, self.gu.ANNOTPROP)
        self.gu.loadProperties(
            self.g, Pathway.object_properties, self.gu.OBJPROP)

        self.load_bindings()
        logger.info("Done parsing files.")

        return

    def _parse_ctd_file(self, limit, file):
        """
        Parses files in CTD.files dictionary
        Args:
            :param limit (int): limit the number of rows processed
            :param file (str): file name (must be defined in CTD.file)
        Returns:
            :return None
        """
        row_count = 0
        version_pattern = re.compile(r'^# Report created: (.+)$')
        is_versioned = False
        file_path = '/'.join((self.rawdir, file))
        with gzip.open(file_path, 'rt') as tsvfile:
            reader = csv.reader(tsvfile, delimiter="\t")
            for row in reader:
                # Scan the header lines until we get the version
                # There is no official version sp we are using
                # the upload timestamp instead
开发者ID:JervenBolleman,项目名称:dipper,代码行数:70,代码来源:CTD.py

示例15: process_catalog

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadProperties [as 别名]
    def process_catalog(self, limit=None):
        """
        :param limit:
        :return:

        """
        raw = '/'.join((self.rawdir, self.files['catalog']['file']))
        logger.info("Processing Data from %s", raw)
        gu = GraphUtils(curie_map.get())

        if self.testMode:      # set the graph to build
            g = self.testgraph
        else:
            g = self.graph

        line_counter = 0
        geno = Genotype(g)

        gu.loadProperties(g, geno.object_properties, gu.OBJPROP)
        gu.loadAllProperties(g)

        tax_id = 'NCBITaxon:9606'  # hardcode
        genome_version = 'GRCh38'  # hardcode

        # build a hashmap of genomic location to identifiers,
        # to try to get the equivalences

        loc_to_id_hash = {}

        with open(raw, 'r', encoding="iso-8859-1") as csvfile:
            filereader = csv.reader(csvfile, delimiter='\t', quotechar='\"')
            next(filereader, None)  # skip the header row
            for row in filereader:
                if not row:
                    pass
                else:
                    line_counter += 1
                    (date_added_to_catalog, pubmed_num, first_author, pub_date,
                     journal, link, study_name, disease_or_trait,
                     initial_sample_description, replicate_sample_description,
                     region, chrom_num, chrom_pos, reported_gene_nums,
                     mapped_gene, upstream_gene_num, downstream_gene_num,
                     snp_gene_nums, upstream_gene_distance,
                     downstream_gene_distance, strongest_snp_risk_allele, snps,
                     merged, snp_id_current, context, intergenic_flag,
                     risk_allele_frequency, pvalue, pvalue_mlog, pvalue_text,
                     or_or_beta, confidence_interval_95,
                     platform_with_snps_passing_qc, cnv_flag, mapped_trait,
                     mapped_trait_uri) = row

                    intersect = \
                        list(set([str(i) for i in self.test_ids['gene']]) &
                             set(re.split(r',', snp_gene_nums)))
                    # skip if no matches found in test set
                    if self.testMode and len(intersect) == 0:
                        continue

# 06-May-2015	25917933	Zai CC	20-Nov-2014	J Psychiatr Res	http://europepmc.org/abstract/MED/25917933
# A genome-wide association study of suicide severity scores in bipolar disorder.
# Suicide in bipolar disorder
# 959 European ancestry individuals	NA
# 10p11.22	10	32704340	C10orf68, CCDC7, ITGB1	CCDC7
# rs7079041-A	rs7079041	0	7079041	intron	0		2E-6	5.698970
                    if chrom_num != '' and chrom_pos != '':
                        loc = 'chr'+str(chrom_num)+':'+str(chrom_pos)
                        if loc not in loc_to_id_hash:
                            loc_to_id_hash[loc] = set()
                    else:
                        loc = None

                    if re.search(r' x ', strongest_snp_risk_allele) \
                            or re.search(r',', strongest_snp_risk_allele):
                        # TODO deal with haplotypes
                        logger.warning(
                            "We can't deal with haplotypes yet: %s",
                            strongest_snp_risk_allele)
                        continue
                    elif re.match(r'rs', strongest_snp_risk_allele):
                        rs_id = 'dbSNP:'+strongest_snp_risk_allele.strip()
                        # remove the alteration
                    elif re.match(r'kgp', strongest_snp_risk_allele):
                        # FIXME this isn't correct
                        rs_id = 'dbSNP:'+strongest_snp_risk_allele.strip()
                        # http://www.1000genomes.org/faq/what-are-kgp-identifiers
                        # for some information
                        # They were created by Illumina for their genotyping
                        # platform before some variants identified during the
                        # pilot phase of the project had been assigned
                        # rs numbers.
                    elif re.match(r'chr', strongest_snp_risk_allele):
                        # like: chr10:106180121-G
                        rs_id = ':gwas-' + \
                            re.sub(
                                r':', '-', strongest_snp_risk_allele.strip())
                    elif strongest_snp_risk_allele.strip() == '':
                        # logger.debug(
                        #    "No strongest SNP risk allele for %s:\n%s",
                        #    pubmed_num, str(row))
                        # FIXME still consider adding in the EFO terms
                        # for what the study measured?
#.........这里部分代码省略.........
开发者ID:JervenBolleman,项目名称:dipper,代码行数:103,代码来源:GWASCatalog.py


注:本文中的dipper.utils.GraphUtils.GraphUtils.loadProperties方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。