当前位置: 首页>>代码示例>>Python>>正文


Python GraphUtils.loadAllProperties方法代码示例

本文整理汇总了Python中dipper.utils.GraphUtils.GraphUtils.loadAllProperties方法的典型用法代码示例。如果您正苦于以下问题:Python GraphUtils.loadAllProperties方法的具体用法?Python GraphUtils.loadAllProperties怎么用?Python GraphUtils.loadAllProperties使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在dipper.utils.GraphUtils.GraphUtils的用法示例。


在下文中一共展示了GraphUtils.loadAllProperties方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: parse

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadAllProperties [as 别名]
    def parse(self, limit=None):
        if limit is not None:
            logger.info("Only parsing first %s rows of each file", limit)

        if self.version_num is None:
            import os
            logger.info("Figuring out version num for files")
            # probe the raw directory for the WSnumber on
            # the "letter.WS###" file.
            # this is the only one that we keep the version number on
            files = os.listdir(self.rawdir)
            letter_file = next(f for f in files if re.match(r'letter', f))
            vernum = re.search(r'(WS\d+)', letter_file)
            self.update_wsnum_in_files(vernum.group(1))

        logger.info("Parsing files...")

        if self.testOnly:
            self.testMode = True

        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        self.nobnodes = True  # FIXME
        # to hold any label for a given id
        self.id_label_map = {}
        # to hold the mappings between genotype and background
        self.genotype_backgrounds = {}
        self.extrinsic_id_to_enviro_id_hash = {}
        # to hold the genes variant due to a seq alt
        self.variant_loci_genes = {}
        # to hold the parts of an environment
        self.environment_hash = {}
        self.wildtype_genotypes = []
        # stores the rnai_reagent to gene targets
        self.rnai_gene_map = {}

        self.process_gene_ids(limit)
        # self.process_gene_desc(limit)   #TEC imput file is mia 2016-Mar-03
        self.process_allele_phenotype(limit)
        self.process_rnai_phenotypes(limit)
        self.process_pub_xrefs(limit)
        self.process_feature_loc(limit)
        self.process_disease_association(limit)
        # TODO add this when when complete
        # self.process_gene_interaction(limit)

        logger.info("Finished parsing.")

        self.load_bindings()
        gu = GraphUtils(curie_map.get())
        gu.loadAllProperties(g)
        gu.loadObjectProperties(g, Genotype.object_properties)

        logger.info("Found %d nodes in graph", len(self.graph))
        logger.info("Found %d nodes in testgraph", len(self.testgraph))

        return
开发者ID:JervenBolleman,项目名称:dipper,代码行数:62,代码来源:WormBase.py

示例2: _process_genes

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadAllProperties [as 别名]
    def _process_genes(self, taxid, limit=None):
        gu = GraphUtils(curie_map.get())

        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        geno = Genotype(g)

        raw = '/'.join((self.rawdir, self.files[taxid]['file']))
        line_counter = 0
        logger.info("Processing Ensembl genes for tax %s", taxid)
        with open(raw, 'r', encoding="utf8") as csvfile:
            filereader = csv.reader(csvfile, delimiter='\t')
            for row in filereader:
                if len(row) < 4:
                    logger.error("Data error for file %s", raw)
                    return
                (ensembl_gene_id, external_gene_name, description,
                 gene_biotype, entrezgene) = row[0:5]

                # in the case of human genes, we also get the hgnc id,
                # and is the last col
                if taxid == '9606':
                    hgnc_id = row[5]
                else:
                    hgnc_id = None

                if self.testMode and entrezgene != '' \
                        and int(entrezgene) not in self.gene_ids:
                    continue

                line_counter += 1
                gene_id = 'ENSEMBL:'+ensembl_gene_id
                if description == '':
                    description = None
                gene_type_id = self._get_gene_type(gene_biotype)
                gene_type_id = None
                gu.addClassToGraph(
                    g, gene_id, external_gene_name, gene_type_id, description)

                if entrezgene != '':
                    gu.addEquivalentClass(g, gene_id, 'NCBIGene:'+entrezgene)
                if hgnc_id is not None and hgnc_id != '':
                    gu.addEquivalentClass(g, gene_id, hgnc_id)
                geno.addTaxon('NCBITaxon:'+taxid, gene_id)

                if not self.testMode \
                        and limit is not None and line_counter > limit:
                    break

        gu.loadProperties(g, Feature.object_properties, gu.OBJPROP)
        gu.loadProperties(g, Feature.data_properties, gu.DATAPROP)
        gu.loadProperties(g, Genotype.object_properties, gu.OBJPROP)
        gu.loadAllProperties(g)

        return
开发者ID:JervenBolleman,项目名称:dipper,代码行数:60,代码来源:Ensembl.py

示例3: _process_orthologs

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadAllProperties [as 别名]
    def _process_orthologs(self, raw, limit=None):
        """
        This method maps orthologs for a species to the KEGG orthology classes.

        Triples created:
        <gene_id> is a class
        <orthology_class_id> is a class

        <assoc_id> has subject <gene_id>
        <assoc_id> has object <orthology_class_id>
        :param limit:
        :return:

        """

        logger.info("Processing orthologs")
        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph
        line_counter = 0
        gu = GraphUtils(curie_map.get())
        gu.loadAllProperties(g)
        with open(raw, 'r', encoding="iso-8859-1") as csvfile:
            filereader = csv.reader(csvfile, delimiter='\t', quotechar='\"')
            for row in filereader:
                line_counter += 1
                (gene_id, orthology_class_id) = row

                orthology_class_id = 'KEGG:'+orthology_class_id.strip()
                gene_id = 'KEGG:'+gene_id.strip()

                # note that the panther_id references a group of orthologs,
                # and is not 1:1 with the rest

                # add the KO id as a gene-family grouping class
                OrthologyAssoc(
                    self.name, gene_id, None).add_gene_family_to_graph(
                        g, orthology_class_id)

                # add gene and orthology class to graph;
                # assume labels will be taken care of elsewhere
                gu.addClassToGraph(g, gene_id, None)
                gu.addClassToGraph(g, orthology_class_id, None)

                if not self.testMode and \
                        limit is not None and line_counter > limit:
                    break

        logger.info("Done with orthologs")
        return
开发者ID:JervenBolleman,项目名称:dipper,代码行数:53,代码来源:KEGG.py

示例4: parse

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadAllProperties [as 别名]
    def parse(self, limit=None):
        """
        MPD data is delivered in four separate csv files and one xml file,
        which we process iteratively and write out as
        one large graph.

        :param limit:
        :return:
        """
        if limit is not None:
            logger.info("Only parsing first %s rows fo each file", str(limit))

        logger.info("Parsing files...")

        if self.testOnly:
            self.testMode = True
            g = self.testgraph
            self.geno = Genotype(self.testgraph)
        else:
            g = self.graph

        self._process_straininfo(limit)
        # the following will provide us the hash-lookups
        # These must be processed in a specific order

        # mapping between assays and ontology terms
        self._process_ontology_mappings_file(limit)
        # this is the metadata about the measurements
        self._process_measurements_file(limit)
        # get all the measurements per strain
        self._process_strainmeans_file(limit)

        # The following will use the hash populated above
        # to lookup the ids when filling in the graph
        self._fill_provenance_graph(limit)

        logger.info("Finished parsing.")

        self.load_bindings()

        gu = GraphUtils(curie_map.get())
        gu.loadAllProperties(g)
        gu.loadProperties(g, G2PAssoc.object_properties, GraphUtils.OBJPROP)
        gu.loadProperties(g, G2PAssoc.datatype_properties, GraphUtils.OBJPROP)
        gu.loadProperties(
            g, G2PAssoc.annotation_properties, GraphUtils.ANNOTPROP)

        logger.info("Found %d nodes", len(self.graph))
        return
开发者ID:JervenBolleman,项目名称:dipper,代码行数:51,代码来源:MPD.py

示例5: parse

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadAllProperties [as 别名]
    def parse(self, limit=None):
        if limit is not None:
            logger.info("Only parsing first %s rows of each file", limit)
        logger.info("Parsing files...")

        if self.testOnly:
            self.testMode = True

        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        self.nobnodes = True  # FIXME

        # build the id map for mapping uniprot ids to genes
        uniprot_entrez_id_map = self.get_uniprot_entrez_id_map()

        for s in self.files:

            if s in ['go-references', 'id-map']:
                continue

            if not self.testMode and int(s) not in self.tax_ids:
                continue

            file = '/'.join((self.rawdir, self.files.get(s)['file']))
            self.process_gaf(file, limit, uniprot_entrez_id_map)

        logger.info("Finished parsing.")

        self.load_bindings()
        gu = GraphUtils(curie_map.get())
        gu.loadAllProperties(g)
        gu.loadObjectProperties(g, Genotype.object_properties)

        logger.info("Found %d nodes in graph", len(self.graph))
        logger.info("Found %d nodes in testgraph", len(self.testgraph))

        return
开发者ID:JervenBolleman,项目名称:dipper,代码行数:42,代码来源:GeneOntology.py

示例6: _process_all

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadAllProperties [as 别名]

#.........这里部分代码省略.........
                if 'includedTitles' in titles:
                    other_labels += self._get_alt_labels(titles['includedTitles'])

                # add synonyms of alternate labels
                # preferredTitle": "PFEIFFER SYNDROME",
                # "alternativeTitles": "ACROCEPHALOSYNDACTYLY, TYPE V; ACS5;;\nACS V;;\nNOACK SYNDROME",
                # "includedTitles": "CRANIOFACIAL-SKELETAL-DERMATOLOGIC DYSPLASIA, INCLUDED"

                # remove the abbreviation (comes after the ;) from the preferredTitle, and add it as a synonym
                abbrev = None
                if len(re.split(';', label)) > 1:
                    abbrev = (re.split(';', label)[1].strip())
                newlabel = self._cleanup_label(label)

                description = self._get_description(e['entry'])
                omimid = 'OMIM:'+str(omimnum)

                if e['entry']['status'] == 'removed':
                    gu.addDeprecatedClass(g, omimid)
                else:
                    omimtype = self._get_omimtype(e['entry'])
                    # this uses our cleaned-up label
                    gu.addClassToGraph(g, omimid, newlabel, omimtype)

                    # add the original OMIM label as a synonym
                    gu.addSynonym(g, omimid, label)

                    # add the alternate labels and includes as synonyms
                    for l in other_labels:
                        gu.addSynonym(g, omimid, l)

                    # for OMIM, we're adding the description as a definition
                    gu.addDefinition(g, omimid, description)
                    if abbrev is not None:
                        gu.addSynonym(g, omimid, abbrev)

                    # if this is a genetic locus (but not sequenced) then add the chrom loc info
                    if omimtype == Genotype.genoparts['biological_region']:
                        if 'geneMapExists' in e['entry'] and e['entry']['geneMapExists']:
                            genemap = e['entry']['geneMap']
                            if 'cytoLocation' in genemap:
                                cytoloc = genemap['cytoLocation']
                                # parse the cytoloc.  add this omim thing as a subsequence of the cytofeature
                                # 18p11.3-p11.2
                                # for now, just take the first one
                                # FIXME add the other end of the range, but not sure how to do that
                                # not sure if saying subsequence of feature is the right relationship
                                cytoloc = cytoloc.split('-')[0]
                                f = Feature(omimid, None, None)
                                if 'chromosome' in genemap:
                                    chrom = makeChromID(str(genemap['chromosome']), tax_num, 'CHR')
                                    geno.addChromosomeClass(str(genemap['chromosome']), tax_id, tax_label)
                                    loc = makeChromID(cytoloc, tax_num, 'CHR')
                                    gu.addClassToGraph(g, loc, cytoloc)   # this is the chr band
                                    f.addSubsequenceOfFeature(g, loc)
                                    f.addFeatureToGraph(g)
                                pass

                    # check if moved, if so, make it deprecated and replaced/consider class to the other thing(s)
                    # some entries have been moved to multiple other entries and use the joining raw word "and"
                    # 612479 is movedto:  "603075 and 603029"  OR
                    # others use a comma-delimited list, like:
                    # 610402 is movedto: "609122,300870"
                    if e['entry']['status'] == 'moved':
                        if re.search('and', str(e['entry']['movedTo'])):
                            # split the movedTo entry on 'and'
                            newids = re.split('and', str(e['entry']['movedTo']))
                        elif len(str(e['entry']['movedTo']).split(',')) > 0:
                            # split on the comma
                            newids = str(e['entry']['movedTo']).split(',')
                        else:
                            # make a list of one
                            newids = [str(e['entry']['movedTo'])]
                        # cleanup whitespace and add OMIM prefix to numeric portion
                        fixedids = []
                        for i in newids:
                            fixedids.append('OMIM:'+i.strip())

                        gu.addDeprecatedClass(g, omimid, fixedids)

                    self._get_phenotypicseries_parents(e['entry'], g)
                    self._get_mappedids(e['entry'], g)

                    self._get_pubs(e['entry'], g)

                    self._get_process_allelic_variants(e['entry'], g)

                ### end iterating over batch of entries

            # can't have more than 4 req per sec,
            # so wait the remaining time, if necessary
            dt = datetime.now() - request_time
            rem = 0.25 - dt.total_seconds()
            if rem > 0:
                logger.info("waiting %d sec", rem)
                time.sleep(rem/1000)

            gu.loadAllProperties(g)

        return
开发者ID:d3borah,项目名称:dipper,代码行数:104,代码来源:OMIM.py

示例7: process_catalog

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadAllProperties [as 别名]
    def process_catalog(self, limit=None):
        """
        :param limit:
        :return:

        """
        raw = '/'.join((self.rawdir, self.files['catalog']['file']))
        logger.info("Processing Data from %s", raw)
        gu = GraphUtils(curie_map.get())

        if self.testMode:      # set the graph to build
            g = self.testgraph
        else:
            g = self.graph

        line_counter = 0
        geno = Genotype(g)

        gu.loadProperties(g, geno.object_properties, gu.OBJPROP)
        gu.loadAllProperties(g)

        tax_id = 'NCBITaxon:9606'  # hardcode
        genome_version = 'GRCh38'  # hardcode

        # build a hashmap of genomic location to identifiers,
        # to try to get the equivalences

        loc_to_id_hash = {}

        with open(raw, 'r', encoding="iso-8859-1") as csvfile:
            filereader = csv.reader(csvfile, delimiter='\t', quotechar='\"')
            next(filereader, None)  # skip the header row
            for row in filereader:
                if not row:
                    pass
                else:
                    line_counter += 1
                    (date_added_to_catalog, pubmed_num, first_author, pub_date,
                     journal, link, study_name, disease_or_trait,
                     initial_sample_description, replicate_sample_description,
                     region, chrom_num, chrom_pos, reported_gene_nums,
                     mapped_gene, upstream_gene_num, downstream_gene_num,
                     snp_gene_nums, upstream_gene_distance,
                     downstream_gene_distance, strongest_snp_risk_allele, snps,
                     merged, snp_id_current, context, intergenic_flag,
                     risk_allele_frequency, pvalue, pvalue_mlog, pvalue_text,
                     or_or_beta, confidence_interval_95,
                     platform_with_snps_passing_qc, cnv_flag, mapped_trait,
                     mapped_trait_uri) = row

                    intersect = \
                        list(set([str(i) for i in self.test_ids['gene']]) &
                             set(re.split(r',', snp_gene_nums)))
                    # skip if no matches found in test set
                    if self.testMode and len(intersect) == 0:
                        continue

# 06-May-2015	25917933	Zai CC	20-Nov-2014	J Psychiatr Res	http://europepmc.org/abstract/MED/25917933
# A genome-wide association study of suicide severity scores in bipolar disorder.
# Suicide in bipolar disorder
# 959 European ancestry individuals	NA
# 10p11.22	10	32704340	C10orf68, CCDC7, ITGB1	CCDC7
# rs7079041-A	rs7079041	0	7079041	intron	0		2E-6	5.698970
                    if chrom_num != '' and chrom_pos != '':
                        loc = 'chr'+str(chrom_num)+':'+str(chrom_pos)
                        if loc not in loc_to_id_hash:
                            loc_to_id_hash[loc] = set()
                    else:
                        loc = None

                    if re.search(r' x ', strongest_snp_risk_allele) \
                            or re.search(r',', strongest_snp_risk_allele):
                        # TODO deal with haplotypes
                        logger.warning(
                            "We can't deal with haplotypes yet: %s",
                            strongest_snp_risk_allele)
                        continue
                    elif re.match(r'rs', strongest_snp_risk_allele):
                        rs_id = 'dbSNP:'+strongest_snp_risk_allele.strip()
                        # remove the alteration
                    elif re.match(r'kgp', strongest_snp_risk_allele):
                        # FIXME this isn't correct
                        rs_id = 'dbSNP:'+strongest_snp_risk_allele.strip()
                        # http://www.1000genomes.org/faq/what-are-kgp-identifiers
                        # for some information
                        # They were created by Illumina for their genotyping
                        # platform before some variants identified during the
                        # pilot phase of the project had been assigned
                        # rs numbers.
                    elif re.match(r'chr', strongest_snp_risk_allele):
                        # like: chr10:106180121-G
                        rs_id = ':gwas-' + \
                            re.sub(
                                r':', '-', strongest_snp_risk_allele.strip())
                    elif strongest_snp_risk_allele.strip() == '':
                        # logger.debug(
                        #    "No strongest SNP risk allele for %s:\n%s",
                        #    pubmed_num, str(row))
                        # FIXME still consider adding in the EFO terms
                        # for what the study measured?
#.........这里部分代码省略.........
开发者ID:JervenBolleman,项目名称:dipper,代码行数:103,代码来源:GWASCatalog.py

示例8: _process_diseasegene

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadAllProperties [as 别名]

#.........这里部分代码省略.........
                # get the element name and id
                # id = elem.get('id') # some internal identifier
                disorder_num = elem.find("OrphaNumber").text

                disorder_id = "Orphanet:" + str(disorder_num)

                if self.testMode and disorder_id not in config.get_config()["test_ids"]["disease"]:
                    continue

                disorder_label = elem.find("Name").text

                # make a hash of internal gene id to type for later lookup
                gene_iid_to_type = {}
                gene_list = elem.find("GeneList")
                for gene in gene_list.findall("Gene"):
                    gene_iid = gene.get("id")
                    gene_type = gene.find("GeneType").get("id")
                    gene_iid_to_type[gene_iid] = gene_type

                gu.addClassToGraph(g, disorder_id, disorder_label)  # assuming that these are in the ontology

                assoc_list = elem.find("DisorderGeneAssociationList")
                for a in assoc_list.findall("DisorderGeneAssociation"):
                    gene_iid = a.find(".//Gene").get("id")
                    gene_name = a.find(".//Gene/Name").text
                    gene_symbol = a.find(".//Gene/Symbol").text
                    gene_num = a.find("./Gene/OrphaNumber").text
                    gene_id = "Orphanet:" + str(gene_num)
                    gene_type_id = self._map_gene_type_id(gene_iid_to_type[gene_iid])
                    gu.addClassToGraph(g, gene_id, gene_symbol, gene_type_id, gene_name)
                    syn_list = a.find("./Gene/SynonymList")
                    if int(syn_list.get("count")) > 0:
                        for s in syn_list.findall("./Synonym"):
                            gu.addSynonym(g, gene_id, s.text)

                    dgtype = a.find("DisorderGeneAssociationType").get("id")
                    rel_id = self._map_rel_id(dgtype)
                    dg_label = a.find("./DisorderGeneAssociationType/Name").text
                    if rel_id is None:
                        logger.warn(
                            "Cannot map association type (%s) to RO for association (%s | %s).  Skipping.",
                            dg_label,
                            disorder_label,
                            gene_symbol,
                        )
                        continue

                    alt_locus_id = "_" + gene_num + "-" + disorder_num + "VL"
                    alt_label = " ".join(
                        ("some variant of", gene_symbol.strip(), "that is a", dg_label.lower(), disorder_label)
                    )
                    if self.nobnodes:
                        alt_locus_id = ":" + alt_locus_id
                    gu.addIndividualToGraph(g, alt_locus_id, alt_label, geno.genoparts["variant_locus"])
                    geno.addAlleleOfGene(alt_locus_id, gene_id)

                    # consider typing the gain/loss-of-function variants like:
                    # http://sequenceontology.org/browser/current_svn/term/SO:0002054
                    # http://sequenceontology.org/browser/current_svn/term/SO:0002053

                    # use "assessed" status to issue an evidence code
                    # FIXME I think that these codes are sub-optimal
                    status_code = a.find("DisorderGeneAssociationStatus").get("id")
                    eco_id = "ECO:0000323"  # imported automatically asserted information used in automatic assertion
                    if status_code == "17991":  # Assessed  # TODO are these internal ids stable between releases?
                        eco_id = "ECO:0000322"  # imported manually asserted information used in automatic assertion
                    # Non-traceable author statement ECO_0000034
                    # imported information in automatic assertion ECO_0000313

                    assoc = G2PAssoc(self.name, alt_locus_id, disorder_id, rel_id)
                    assoc.add_evidence(eco_id)
                    assoc.add_association_to_graph(g)

                    rlist = a.find("./Gene/ExternalReferenceList")
                    eqid = None

                    for r in rlist.findall("ExternalReference"):
                        if r.find("Source").text == "Ensembl":
                            eqid = "ENSEMBL:" + r.find("Reference").text
                        elif r.find("Source").text == "HGNC":
                            eqid = "HGNC:" + r.find("Reference").text
                        elif r.find("Source").text == "OMIM":
                            eqid = "OMIM:" + r.find("Reference").text
                        else:
                            pass  # skip the others for now
                        if eqid is not None:
                            gu.addClassToGraph(g, eqid, None)
                            gu.addEquivalentClass(g, gene_id, eqid)
                            pass
                elem.clear()  # discard the element

            if self.testMode and limit is not None and line_counter > limit:
                return

        gu.loadProperties(g, G2PAssoc.annotation_properties, G2PAssoc.ANNOTPROP)
        gu.loadProperties(g, G2PAssoc.datatype_properties, G2PAssoc.DATAPROP)
        gu.loadProperties(g, G2PAssoc.object_properties, G2PAssoc.OBJECTPROP)
        gu.loadAllProperties(g)

        return
开发者ID:d3borah,项目名称:dipper,代码行数:104,代码来源:Orphanet.py

示例9: _get_gene_info

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadAllProperties [as 别名]

#.........这里部分代码省略.........
                # TODO might have to figure out if things aren't genes, and make them individuals
                gu.addClassToGraph(g, gene_id, label, gene_type_id, desc)

                # we have to do special things here for genes, because they're classes not individuals
                # f = Feature(gene_id,label,gene_type_id,desc)

                if name != '-':
                    gu.addSynonym(g, gene_id, name)
                if synonyms.strip() != '-':
                    for s in synonyms.split('|'):
                        gu.addSynonym(g, gene_id, s.strip(), Assoc.annotation_properties['hasRelatedSynonym'])
                if other_designations.strip() != '-':
                    for s in other_designations.split('|'):
                        gu.addSynonym(g, gene_id, s.strip(), Assoc.annotation_properties['hasRelatedSynonym'])

                # deal with the xrefs
                # MIM:614444|HGNC:HGNC:16851|Ensembl:ENSG00000136828|HPRD:11479|Vega:OTTHUMG00000020696
                if xrefs.strip() != '-':
                    for r in xrefs.strip().split('|'):
                        fixedr = self._cleanup_id(r)
                        if fixedr is not None and fixedr.strip() != '':
                            if re.match('HPRD', fixedr):
                                # proteins are not == genes.
                                gu.addTriple(g, gene_id, self.properties['has_gene_product'], fixedr)
                            else:
                                # skip some of these for now
                                if fixedr.split(':')[0] not in ['Vega', 'IMGT/GENE-DB']:
                                    gu.addEquivalentClass(g, gene_id, fixedr)

                # edge cases of id | symbol | chr | map_loc:
                # 263     AMD1P2    X|Y  with   Xq28 and Yq12
                # 438     ASMT      X|Y  with   Xp22.3 or Yp11.3    # in PAR
                # 419     ART3      4    with   4q21.1|4p15.1-p14   # no idea why there's two bands listed - possibly 2 assemblies
                # 28227   PPP2R3B   X|Y  Xp22.33; Yp11.3            # in PAR
                # 619538  OMS     10|19|3 10q26.3;19q13.42-q13.43;3p25.3   #this is of "unknown" type == susceptibility
                # 101928066       LOC101928066    1|Un    -         # unlocated scaffold
                # 11435   Chrna1  2       2 C3|2 43.76 cM           # mouse --> 2C3
                # 11548   Adra1b  11      11 B1.1|11 25.81 cM       # mouse --> 11B1.1
                # 11717   Ampd3   7       7 57.85 cM|7 E2-E3        # mouse
                # 14421   B4galnt1        10      10 D3|10 74.5 cM  # mouse
                # 323212  wu:fb92e12      19|20   -                 # fish
                # 323368  ints10  6|18    -                         # fish
                # 323666  wu:fc06e02      11|23   -                 # fish

                # feel that the chr placement can't be trusted in this table when there is > 1 listed
                # with the exception of human X|Y, i will only take those that align to one chr

                # FIXME remove the chr mapping below when we pull in the genomic coords
                if str(chr) != '-' and str(chr) != '':
                    if re.search('\|', str(chr)) and str(chr) not in ['X|Y','X; Y']:
                        # this means that there's uncertainty in the mapping.  skip it
                        # TODO we'll need to figure out how to deal with >1 loc mapping
                        logger.info('%s is non-uniquely mapped to %s.  Skipping for now.', gene_id, str(chr))
                        continue
                        # X|Y	Xp22.33;Yp11.3

                    # if (not re.match('(\d+|(MT)|[XY]|(Un)$',str(chr).strip())):
                    #    print('odd chr=',str(chr))
                    if str(chr) == 'X; Y':
                        chr = 'X|Y'  # rewrite the PAR regions for processing
                    # do this in a loop to allow PAR regions like X|Y
                    for c in re.split('\|',str(chr)) :
                        geno.addChromosomeClass(c, tax_id, None)  # assume that the chromosome label will get added elsewhere
                        mychrom = makeChromID(c, tax_num, 'CHR')
                        mychrom_syn = makeChromLabel(c, tax_num)  # temporarily use the taxnum for the disambiguating label
                        gu.addSynonym(g, mychrom,  mychrom_syn)
                        band_match = re.match('[0-9A-Z]+[pq](\d+)?(\.\d+)?$', map_loc)
                        if band_match is not None and len(band_match.groups()) > 0:
                            # if tax_num != '9606':
                            #     continue
                            # this matches the regular kind of chrs, so make that kind of band
                            # not sure why this matches? chrX|Y or 10090chr12|Un"
                            # TODO we probably need a different regex per organism
                            # the maploc_id already has the numeric chromosome in it, strip it first
                            bid = re.sub('^'+c, '', map_loc)
                            maploc_id = makeChromID(c+bid, tax_num, 'CHR')  # the generic location (no coordinates)
                            # print(map_loc,'-->',bid,'-->',maploc_id)
                            band = Feature(maploc_id, None, None)  # Assume it's type will be added elsewhere
                            band.addFeatureToGraph(g)
                            # add the band as the containing feature
                            gu.addTriple(g, gene_id, Feature.object_properties['is_subsequence_of'], maploc_id)
                        else:
                            # TODO handle these cases
                            # examples are: 15q11-q22, Xp21.2-p11.23, 15q22-qter, 10q11.1-q24,
                            ## 12p13.3-p13.2|12p13-p12, 1p13.3|1p21.3-p13.1,  12cen-q21, 22q13.3|22q13.3
                            logger.debug('not regular band pattern for %s: %s', gene_id, map_loc)
                            # add the gene as a subsequence of the chromosome
                            gu.addTriple(g, gene_id, Feature.object_properties['is_subsequence_of'], mychrom)

                geno.addTaxon(tax_id, gene_id)

                if not self.testMode and limit is not None and line_counter > limit:
                    break

            gu.loadProperties(g, Feature.object_properties, gu.OBJPROP)
            gu.loadProperties(g, Feature.data_properties, gu.DATAPROP)
            gu.loadProperties(g, Genotype.object_properties, gu.OBJPROP)
            gu.loadAllProperties(g)

        return
开发者ID:d3borah,项目名称:dipper,代码行数:104,代码来源:NCBIGene.py

示例10: _process_data

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadAllProperties [as 别名]
    def _process_data(self, raw, limit=None):
        """
        This function will process the data files from Coriell.
        We make the assumption that any alleles listed are variants
        (alternates to w.t.)

        Triples: (examples)

        :NIGMSrepository a CLO_0000008 #repository
        label : NIGMS Human Genetic Cell Repository
        foaf:page https://catalog.coriell.org/0/sections/collections/NIGMS/?SsId=8

            line_id a CL_0000057,  #fibroblast line
                derives_from patient_id
                part_of :NIGMSrepository
                RO:model_of OMIM:disease_id

            patient id a foaf:person,
                label: "fibroblast from patient 12345 with disease X"
                member_of family_id  #what is the right thing here?
                SIO:race EFO:caucasian  #subclass of EFO:0001799
                in_taxon NCBITaxon:9606
                dc:description Literal(remark)
                RO:has_phenotype OMIM:disease_id
                GENO:has_genotype genotype_id

            family_id a owl:NamedIndividual
                foaf:page "https://catalog.coriell.org/0/Sections/BrowseCatalog/FamilyTypeSubDetail.aspx?PgId=402&fam=2104&coll=GM"

            genotype_id a intrinsic_genotype
                GENO:has_alternate_part allelic_variant_id
                we don't necessarily know much about the genotype,
                other than the allelic variant. also there's the sex here

            pub_id mentions cell_line_id

        :param raw:
        :param limit:
        :return:
        """
        logger.info("Processing Data from %s", raw)
        gu = GraphUtils(curie_map.get())

        if self.testMode:      # set the graph to build
            g = self.testgraph
        else:
            g = self.graph

        line_counter = 0
        geno = Genotype(g)
        du = DipperUtil()

        gu.loadProperties(g, geno.object_properties, gu.OBJPROP)
        gu.loadAllProperties(g)

        with open(raw, 'r', encoding="iso-8859-1") as csvfile:
            filereader = csv.reader(csvfile, delimiter=',', quotechar='\"')
            next(filereader, None)  # skip the header row
            for row in filereader:
                if not row:
                    pass
                else:
                    line_counter += 1

                    (catalog_id, description, omim_number, sample_type,
                     cell_line_available, dna_in_stock, dna_ref, gender, age,
                     race, ethnicity, affected, karyotype, relprob, mutation,
                     gene, family_id, collection, url, cat_remark, pubmed_ids,
                     family_member, variant_id, dbsnp_id, species) = row

                    # example:
                    # GM00003,HURLER SYNDROME,607014,Fibroblast,Yes,No,,Female,26 YR,Caucasian,,,,
                    # parent,,,39,NIGMS Human Genetic Cell Repository,
                    # http://ccr.coriell.org/Sections/Search/Sample_Detail.aspx?Ref=GM00003,
                    # 46;XX; clinically normal mother of a child with Hurler syndrome; proband not in Repository,,
                    # 2,,18343,Homo sapiens

                    if self.testMode and catalog_id not in self.test_lines:
                        # skip rows not in our test lines, when in test mode
                        continue

                    # ###########    BUILD REQUIRED VARIABLES    ###########

                    # Make the cell line ID
                    cell_line_id = 'Coriell:'+catalog_id.strip()

                    # Map the cell/sample type
                    cell_type = self._map_cell_type(sample_type)

                    # Make a cell line label
                    line_label = \
                        collection.partition(' ')[0]+'-'+catalog_id.strip()

                    # Map the repository/collection
                    repository = self._map_collection(collection)

                    # patients are uniquely identified by one of:
                    # dbsnp id (which is == an individual haplotype)
                    # family id + family member (if present) OR
                    # probands are usually family member zero
#.........这里部分代码省略.........
开发者ID:JervenBolleman,项目名称:dipper,代码行数:103,代码来源:Coriell.py

示例11: Monochrom

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadAllProperties [as 别名]

#.........这里部分代码省略.........
                    # then the subbands are subsequences of the full band
                    # add the subsequence stuff as restrictions
                    if i < len(parents) - 1:
                        pid = cclassid+parents[i+1]   # the instance
                        self.gu.addOWLPropertyClassRestriction(
                            self.graph, pclassid,
                            Feature.object_properties['is_subsequence_of'],
                            pid)
                        self.gu.addOWLPropertyClassRestriction(
                            self.graph, pid,
                            Feature.object_properties['has_subsequence'],
                            pclassid)

                    else:
                        # add the last one (p or q usually)
                        # as attached to the chromosome
                        self.gu.addOWLPropertyClassRestriction(
                            self.graph, pclassid,
                            Feature.object_properties['is_subsequence_of'],
                            cclassid)
                        self.gu.addOWLPropertyClassRestriction(
                            self.graph, cclassid,
                            Feature.object_properties['has_subsequence'],
                            pclassid)

                # connect the band here to the first one in the parent list
                if len(parents) > 0:
                    self.gu.addOWLPropertyClassRestriction(
                        self.graph, maplocclass_id,
                        Feature.object_properties['is_subsequence_of'],
                        cclassid+parents[0])
                    self.gu.addOWLPropertyClassRestriction(
                        self.graph, cclassid+parents[0],
                        Feature.object_properties['has_subsequence'],
                        maplocclass_id)

                if limit is not None and line_counter > limit:
                    break

        self.gu.loadAllProperties(self.graph)

        # TODO figure out the staining intensities for the encompassing bands

        return

    def make_parent_bands(self, band, child_bands):
        """
        this will determine the grouping bands that it belongs to, recursively
        13q21.31 ==>  13, 13q, 13q2, 13q21, 13q21.3, 13q21.31

        :param band:
        :param child_bands:
        :return:

        """
        m = re.match(r'([pq][A-H\d]+(?:\.\d+)?)', band)
        if len(band) > 0:
            if m:
                p = str(band[0:len(band)-1])
                p = re.sub(r'\.$', '', p)
                if p is not None:
                    child_bands.add(p)
                    self.make_parent_bands(p, child_bands)
        else:
            child_bands = set()
        return child_bands

    def map_type_of_region(self, regiontype):
        """
        Note that "stalk" refers to the short arm of acrocentric chromosomes
        chr13,14,15,21,22 for human.
        :param regiontype:
        :return:

        """
        so_id = Feature.types['chromosome_part']

        if regiontype in self.region_type_map.keys():
            so_id = self.region_type_map.get(regiontype)
        else:
            logger.warning(
                "Unmapped code %s. Defaulting to chr_part 'SO:0000830'.",
                regiontype)

        return so_id

    def _check_tax_ids(self):
        for taxon in self.tax_ids:
            if str(taxon) not in self.files:
                raise Exception("Taxon " + str(taxon) +
                                " not supported by source Monochrom")

    def getTestSuite(self):
        # import unittest
        # from tests.test_ucscbands import UCSCBandsTestCase
        test_suite = None
        # test_suite = \
        #   unittest.TestLoader().loadTestsFromTestCase(UCSCBandsTestCase)

        return test_suite
开发者ID:JervenBolleman,项目名称:dipper,代码行数:104,代码来源:Monochrom.py

示例12: _process_phenotype_data

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadAllProperties [as 别名]

#.........这里部分代码省略.........
                                       geno.genoparts['variant_locus'])
                        vl_set.add(vl_id)
                        if len(variants) == 1 and len(genes) == 1:
                            for gene in genes:
                                geno.addAlleleOfGene(vl_id, gene)
                        else:
                            geno.addAllele(vl_id, vl_symbol)
                else:  # len(vars) == 0
                    # it's just anonymous variants in some gene
                    for gene in genes:
                        vl_id = '_'+gene+'-VL'
                        vl_id = re.sub(r':', '', vl_id)
                        if self.nobnodes:
                            vl_id = ':'+vl_id
                        vl_symbol = self.id_label_hash[gene]+'<?>'
                        self.id_label_hash[vl_id] = vl_symbol
                        geno.addAllele(vl_id, vl_symbol,
                                       geno.genoparts['variant_locus'])
                        geno.addGene(gene, self.id_label_hash[gene])
                        geno.addAlleleOfGene(vl_id, gene)
                        vl_set.add(vl_id)

                # make the vslcs
                vl_list = sorted(vl_set)
                vslc_list = []
                for vl in vl_list:
                    # for unknown zygosity
                    vslc_id = '_'+re.sub(r'^_', '', vl)+'U'
                    vslc_id = re.sub(r':', '', vslc_id)
                    if self.nobnodes:
                        vslc_id = ':' + vslc_id
                    vslc_label = self.id_label_hash[vl] + '/?'
                    self.id_label_hash[vslc_id] = vslc_label
                    vslc_list.append(vslc_id)
                    geno.addPartsToVSLC(
                        vslc_id, vl, None, geno.zygosity['indeterminate'],
                        geno.object_properties['has_alternate_part'], None)
                    gu.addIndividualToGraph(
                        g, vslc_id, vslc_label,
                        geno.genoparts['variant_single_locus_complement'])
                if len(vslc_list) > 0:
                    if len(vslc_list) > 1:
                        gvc_id = '-'.join(vslc_list)
                        gvc_id = re.sub(r':', '', gvc_id)
                        if self.nobnodes:
                            gvc_id = ':'+gvc_id
                        gvc_label = \
                            '; '.join(self.id_label_hash[v] for v in vslc_list)
                        gu.addIndividualToGraph(
                            g, gvc_id, gvc_label,
                            geno.genoparts['genomic_variation_complement'])
                        for vslc_id in vslc_list:
                            geno.addVSLCtoParent(vslc_id, gvc_id)
                    else:
                        # the GVC == VSLC, so don't have to make an extra piece
                        gvc_id = vslc_list.pop()
                        gvc_label = self.id_label_hash[gvc_id]

                    genotype_label = gvc_label + ' [n.s.]'
                    bkgd_id = \
                        '_' + re.sub(r':', '', '-'.join(
                            (geno.genoparts['unspecified_genomic_background'],
                             s)))
                    genotype_id = '-'.join((gvc_id, bkgd_id))
                    if self.nobnodes:
                        bkgd_id = ':'+bkgd_id
                    geno.addTaxon(mouse_taxon, bkgd_id)
                    geno.addGenomicBackground(
                        bkgd_id, 'unspecified ('+s+')',
                        geno.genoparts['unspecified_genomic_background'],
                        "A placeholder for the " +
                        "unspecified genetic background for "+s)
                    geno.addGenomicBackgroundToGenotype(
                        bkgd_id, genotype_id,
                        geno.genoparts['unspecified_genomic_background'])
                    geno.addParts(
                        gvc_id, genotype_id,
                        geno.object_properties['has_alternate_part'])
                    geno.addGenotype(genotype_id, genotype_label)
                    gu.addTriple(
                        g, s, geno.object_properties['has_genotype'],
                        genotype_id)
                else:
                    # logger.debug(
                    #   "Strain %s is not making a proper genotype.", s)
                    pass

            gu.loadProperties(
                g, G2PAssoc.object_properties, G2PAssoc.OBJECTPROP)
            gu.loadProperties(
                g, G2PAssoc.datatype_properties, G2PAssoc.DATAPROP)
            gu.loadProperties(
                g, G2PAssoc.annotation_properties, G2PAssoc.ANNOTPROP)
            gu.loadAllProperties(g)

            logger.warning(
                "The following gene symbols did not list identifiers: %s",
                str(sorted(list(genes_with_no_ids))))

        return
开发者ID:JervenBolleman,项目名称:dipper,代码行数:104,代码来源:MMRRC.py

示例13: _process_kegg_disease2gene

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadAllProperties [as 别名]
    def _process_kegg_disease2gene(self, limit=None):
        """
        This method creates an association between diseases and their associated genes.
        We are being conservative here, and only processing those diseases for which there
        is no mapping to OMIM.

        Triples created:
        <alternate_locus> is an Individual
        <alternate_locus> has type <variant_locus>
        <alternate_locus> is an allele of  <gene_id>

        <assoc_id> has subject <disease_id>
        <assoc_id> has object <gene_id>
        :param limit:
        :return:
        """

        logger.info("Processing KEGG disease to gene")
        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph
        line_counter = 0
        geno = Genotype(g)
        gu = GraphUtils(curie_map.get())
        rel = gu.object_properties['is_marker_for']
        gu.loadAllProperties(g)
        noomimset = set()
        raw = '/'.join((self.rawdir, self.files['disease_gene']['file']))
        with open(raw, 'r', encoding="iso-8859-1") as csvfile:
            filereader = csv.reader(csvfile, delimiter='\t', quotechar='\"')
            for row in filereader:
                line_counter += 1
                (gene_id, disease_id) = row

                if self.testMode and gene_id not in self.test_ids['genes']:
                    continue

                gene_id = 'KEGG-'+gene_id.strip()
                disease_id = 'KEGG-'+disease_id.strip()

                # only add diseases for which there is no omim id and not a grouping class
                if disease_id not in self.kegg_disease_hash:
                    # add as a class
                    disease_label = None
                    if disease_id in self.label_hash:
                        disease_label = self.label_hash[disease_id]
                    if re.search('includ', str(disease_label)):
                        # they use 'including' when it's a grouping class
                        logger.info("Skipping this association because it's a grouping class: %s", disease_label)
                        continue
                    gu.addClassToGraph(g, disease_id, disease_label, 'DOID:4')  # type this disease_id as a disease
                    noomimset.add(disease_id)
                    alt_locus_id = self._make_variant_locus_id(gene_id, disease_id)
                    alt_label = self.label_hash[alt_locus_id]
                    gu.addIndividualToGraph(g, alt_locus_id, alt_label, geno.genoparts['variant_locus'])
                    geno.addAlleleOfGene(alt_locus_id, gene_id)
                    # Add the disease to gene relationship.
                    assoc = G2PAssoc(self.name, alt_locus_id, disease_id, rel)
                    assoc.load_all_properties(g)
                    assoc.add_association_to_graph(g)

                if (not self.testMode) and (limit is not None and line_counter > limit):
                    break

        logger.info("Done with KEGG disease to gene")
        logger.info("Found %d diseases with no omim id", len(noomimset))

        return
开发者ID:d3borah,项目名称:dipper,代码行数:71,代码来源:KEGG.py

示例14: _process_diseasegene

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadAllProperties [as 别名]

#.........这里部分代码省略.........
                gene_iid_to_type = {}
                gene_list = elem.find('GeneList')
                for gene in gene_list.findall('Gene'):
                    gene_iid = gene.get('id')
                    gene_type = gene.find('GeneType').get('id')
                    gene_iid_to_type[gene_iid] = gene_type

                # assuming that these are in the ontology
                gu.addClassToGraph(g, disorder_id, disorder_label)

                assoc_list = elem.find('DisorderGeneAssociationList')
                for a in assoc_list.findall('DisorderGeneAssociation'):
                    gene_iid = a.find('.//Gene').get('id')
                    gene_name = a.find('.//Gene/Name').text
                    gene_symbol = a.find('.//Gene/Symbol').text
                    gene_num = a.find('./Gene/OrphaNumber').text
                    gene_id = 'Orphanet:'+str(gene_num)
                    gene_type_id = \
                        self._map_gene_type_id(gene_iid_to_type[gene_iid])
                    gu.addClassToGraph(
                        g, gene_id, gene_symbol, gene_type_id, gene_name)
                    syn_list = a.find('./Gene/SynonymList')
                    if int(syn_list.get('count')) > 0:
                        for s in syn_list.findall('./Synonym'):
                            gu.addSynonym(g, gene_id, s.text)

                    dgtype = a.find('DisorderGeneAssociationType').get('id')
                    rel_id = self._map_rel_id(dgtype)
                    dg_label = \
                        a.find('./DisorderGeneAssociationType/Name').text
                    if rel_id is None:
                        logger.warning(
                            "Cannot map association type (%s) to RO " +
                            "for association (%s | %s).  Skipping.",
                            dg_label, disorder_label, gene_symbol)
                        continue

                    alt_locus_id = '_'+gene_num+'-'+disorder_num+'VL'
                    alt_label = \
                        ' '.join(('some variant of', gene_symbol.strip(),
                                  'that is a', dg_label.lower(),
                                  disorder_label))
                    if self.nobnodes:
                        alt_locus_id = ':'+alt_locus_id
                    gu.addIndividualToGraph(g, alt_locus_id, alt_label,
                                            geno.genoparts['variant_locus'])
                    geno.addAlleleOfGene(alt_locus_id, gene_id)

                    # consider typing the gain/loss-of-function variants like:
                    # http://sequenceontology.org/browser/current_svn/term/SO:0002054
                    # http://sequenceontology.org/browser/current_svn/term/SO:0002053

                    # use "assessed" status to issue an evidence code
                    # FIXME I think that these codes are sub-optimal
                    status_code = \
                        a.find('DisorderGeneAssociationStatus').get('id')
                    # imported automatically asserted information
                    # used in automatic assertion
                    eco_id = 'ECO:0000323'
                    # Assessed
                    # TODO are these internal ids stable between releases?
                    if status_code == '17991':
                        # imported manually asserted information
                        # used in automatic assertion
                        eco_id = 'ECO:0000322'
                    # Non-traceable author statement ECO_0000034
                    # imported information in automatic assertion ECO_0000313

                    assoc = G2PAssoc(self.name, alt_locus_id,
                                     disorder_id, rel_id)
                    assoc.add_evidence(eco_id)
                    assoc.add_association_to_graph(g)

                    rlist = a.find('./Gene/ExternalReferenceList')
                    eqid = None

                    for r in rlist.findall('ExternalReference'):
                        if r.find('Source').text == 'Ensembl':
                            eqid = 'ENSEMBL:'+r.find('Reference').text
                        elif r.find('Source').text == 'HGNC':
                            eqid = 'HGNC:'+r.find('Reference').text
                        elif r.find('Source').text == 'OMIM':
                            eqid = 'OMIM:'+r.find('Reference').text
                        else:
                            pass  # skip the others for now
                        if eqid is not None:
                            gu.addClassToGraph(g, eqid, None)
                            gu.addEquivalentClass(g, gene_id, eqid)
                elem.clear()  # discard the element

            if self.testMode and limit is not None and line_counter > limit:
                return

        gu.loadProperties(
            g, G2PAssoc.annotation_properties, G2PAssoc.ANNOTPROP)
        gu.loadProperties(g, G2PAssoc.datatype_properties, G2PAssoc.DATAPROP)
        gu.loadProperties(g, G2PAssoc.object_properties, G2PAssoc.OBJECTPROP)
        gu.loadAllProperties(g)

        return
开发者ID:JervenBolleman,项目名称:dipper,代码行数:104,代码来源:Orphanet.py

示例15: _process_data

# 需要导入模块: from dipper.utils.GraphUtils import GraphUtils [as 别名]
# 或者: from dipper.utils.GraphUtils.GraphUtils import loadAllProperties [as 别名]
    def _process_data(self, raw, limit=None):
        logger.info("Processing Data from %s", raw)
        gu = GraphUtils(curie_map.get())

        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        geno = Genotype(g)
        line_counter = 0
        gu.loadAllProperties(g)
        gu.loadObjectProperties(g, geno.object_properties)

        # Add the taxon as a class
        taxon_id = 'NCBITaxon:10090'  # map to Mus musculus
        gu.addClassToGraph(g, taxon_id, None)

        # with open(raw, 'r', encoding="utf8") as csvfile:
        with gzip.open(raw, 'rt') as csvfile:
            filereader = csv.reader(csvfile, delimiter=',', quotechar='\"')
            next(filereader, None)  # skip the header row
            for row in filereader:
                line_counter += 1

                (marker_accession_id, marker_symbol, phenotyping_center,
                 colony, sex, zygosity, allele_accession_id, allele_symbol,
                 allele_name, strain_accession_id, strain_name, project_name,
                 project_fullname, pipeline_name, pipeline_stable_id,
                 procedure_stable_id, procedure_name, parameter_stable_id,
                 parameter_name, top_level_mp_term_id, top_level_mp_term_name,
                 mp_term_id, mp_term_name, p_value, percentage_change,
                 effect_size, statistical_method, resource_name) = row

                if self.testMode and marker_accession_id not in self.test_ids:
                    continue

                # ##### cleanup some of the identifiers ######
                zygosity_id = self._map_zygosity(zygosity)

                # colony ids sometimes have <> in them, spaces,
                # or other non-alphanumerics and break our system;
                # replace these with underscores
                colony_id = '_'+re.sub(r'\W+', '_', colony)
                if self.nobnodes:
                    colony_id = ':'+colony_id

                if not re.match(r'MGI', allele_accession_id):
                    allele_accession_id = \
                        '_IMPC-'+re.sub(r':', '', allele_accession_id)
                    if self.nobnodes:
                        allele_accession_id = ':'+allele_accession_id
                if re.search(r'EUROCURATE', strain_accession_id):
                    # the eurocurate links don't resolve at IMPC
                    strain_accession_id = '_'+strain_accession_id
                    if self.nobnodes:
                        strain_accession_id = ':'+strain_accession_id
                elif not re.match(r'MGI', strain_accession_id):
                    logger.info(
                        "Found a strange strain accession...%s",
                        strain_accession_id)
                    strain_accession_id = 'IMPC:'+strain_accession_id

                ######################
                # first, add the marker and variant to the graph as with MGI,
                # the allele is the variant locus.  IF the marker is not known,
                # we will call it a sequence alteration.  otherwise,
                # we will create a BNode for the sequence alteration.
                sequence_alteration_id = variant_locus_id = None
                variant_locus_name = sequence_alteration_name = None

                # extract out what's within the <> to get the symbol
                if re.match(r'.*<.*>', allele_symbol):
                    sequence_alteration_name = \
                        re.match(r'.*<(.*)>', allele_symbol).group(1)
                else:
                    sequence_alteration_name = allele_symbol

                if marker_accession_id is not None and \
                        marker_accession_id == '':
                    logger.warning(
                        "Marker unspecified on row %d", line_counter)
                    marker_accession_id = None

                if marker_accession_id is not None:
                    variant_locus_id = allele_accession_id
                    variant_locus_name = allele_symbol
                    variant_locus_type = geno.genoparts['variant_locus']
                    geno.addGene(marker_accession_id, marker_symbol,
                                 geno.genoparts['gene'])
                    geno.addAllele(variant_locus_id, variant_locus_name,
                                   variant_locus_type, None)
                    geno.addAlleleOfGene(variant_locus_id, marker_accession_id)

                    sequence_alteration_id = \
                        '_seqalt'+re.sub(r':', '', allele_accession_id)
                    if self.nobnodes:
                        sequence_alteration_id = ':'+sequence_alteration_id
                    geno.addSequenceAlterationToVariantLocus(
                        sequence_alteration_id, variant_locus_id)
#.........这里部分代码省略.........
开发者ID:JervenBolleman,项目名称:dipper,代码行数:103,代码来源:IMPC.py


注:本文中的dipper.utils.GraphUtils.GraphUtils.loadAllProperties方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。