当前位置: 首页>>代码示例>>Python>>正文


Python Trainer.train_minibatch方法代码示例

本文整理汇总了Python中cntk.Trainer.train_minibatch方法的典型用法代码示例。如果您正苦于以下问题:Python Trainer.train_minibatch方法的具体用法?Python Trainer.train_minibatch怎么用?Python Trainer.train_minibatch使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cntk.Trainer的用法示例。


在下文中一共展示了Trainer.train_minibatch方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import train_minibatch [as 别名]
def train(reader, model, max_epochs):
    # Input variables denoting the features and label data
    query       = Input(input_dim,  is_sparse=False)
    slot_labels = Input(num_labels, is_sparse=True)  # TODO: make sparse once it works

    # apply model to input
    z = model(query)

    # loss and metric
    ce = cross_entropy_with_softmax(z, slot_labels)
    pe = classification_error      (z, slot_labels)

    # training config
    epoch_size = 36000
    minibatch_size = 70
    num_mbs_to_show_result = 100
    momentum_time_constant = momentum_as_time_constant_schedule(minibatch_size / -math.log(0.9))  # TODO: Change to round number. This is 664.39. 700?

    lr_schedule = [0.003]*2+[0.0015]*12+[0.0003] # LR schedule over epochs (we don't run that many epochs, but if we did, these are good values)

    # trainer object
    lr_per_sample = learning_rate_schedule(lr_schedule, UnitType.sample, epoch_size)
    learner = adam_sgd(z.parameters,
                       lr=lr_per_sample, momentum=momentum_time_constant,
                       unit_gain=True,
                       low_memory=True,
                       gradient_clipping_threshold_per_sample=15, gradient_clipping_with_truncation=True)

    trainer = Trainer(z, (ce, pe), [learner])

    # define mapping from reader streams to network inputs
    input_map = {
        query       : reader.streams.query,
        slot_labels : reader.streams.slot_labels
    }

    # process minibatches and perform model training
    log_number_of_parameters(z) ; print()
    # more detailed logging
    progress_printer = ProgressPrinter(freq=100, first=10, tag='Training', tensorboard_log_dir='atis_log', model=z)
    #progress_printer = ProgressPrinter(tag='Training')

    t = 0
    for epoch in range(max_epochs):         # loop over epochs
        epoch_end = (epoch+1) * epoch_size
        while t < epoch_end:               # loop over minibatches on the epoch
            # BUGBUG? The change of minibatch_size parameter vv has no effect.
            data = reader.next_minibatch(min(minibatch_size, epoch_end-t), input_map=input_map) # fetch minibatch
            trainer.train_minibatch(data)                                   # update model with it
            t += trainer.previous_minibatch_sample_count                    # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True) # log progress
            #def trace_node(name):
            #    nl = [n for n in z.parameters if n.name() == name]
            #    if len(nl) > 0:
            #        print (name, np.asarray(nl[0].value))
            #trace_node('W')
            #trace_node('stabilizer_param')
        loss, metric, actual_samples = progress_printer.epoch_summary(with_metric=True)

    return loss, metric
开发者ID:FDecaYed,项目名称:CNTK,代码行数:62,代码来源:LanguageUnderstanding.py

示例2: test_learner_logging

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import train_minibatch [as 别名]
def test_learner_logging():
    from cntk import Trainer
    from cntk.logging import ProgressPrinter
    from cntk import cross_entropy_with_softmax, classification_error

    features = C.input_variable(shape=(1,), needs_gradient=True, name='a')
    w_init = 1
    w = parameter(shape=(1,), init=w_init)
    z = features * w
    labels = C.input_variable(shape=(1,), name='b')
    ce = cross_entropy_with_softmax(z, labels)
    errs = classification_error(z, labels)

    writer = TestProgressWriter();
    lr_values = [0.3, 0.2, 0.1, 0]
    m_values = [0.6, 0.7, 0.8]
    learner = C.momentum_sgd(z.parameters,
                  learning_rate_schedule(lr_values, UnitType.sample, 1),
                  C.momentum_schedule(m_values, 1))
    trainer = Trainer(z, (ce, errs), [learner], writer)

    for i in range(10):
        trainer.train_minibatch({features: [[2.]], labels: [[1.]]})

    assert len(writer.log_output) == len(lr_values + m_values)

    values = [j for i in zip(lr_values,m_values) for j in i] + [0]

    for i in range(len(values)):
        assert (values[i] == writer.log_output[i])
开发者ID:junaidnaseer,项目名称:CNTK,代码行数:32,代码来源:learner_test.py

示例3: train_model

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import train_minibatch [as 别名]
def train_model(reader, model, criterion, epoch_size=50000, max_epochs=80):
    minibatch_size = 64

    # learning parameters
    learner = momentum_sgd(model.parameters, 
                           lr       = learning_rate_schedule([0.0015625]*20+[0.00046875]*20+[0.00015625]*20+[0.000046875]*10+[0.000015625], unit=UnitType.sample, epoch_size=epoch_size),
                           momentum = momentum_as_time_constant_schedule([0]*20+[600]*20+[1200], epoch_size=epoch_size),
                           l2_regularization_weight = 0.002)
    
    # trainer object
    trainer = Trainer(None, criterion, learner)

    # perform model training
    log_number_of_parameters(model) ; print()
    progress_printer = ProgressPrinter(tag='Training', num_epochs=max_epochs)

    for epoch in range(max_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            mb = reader.next_minibatch(min(minibatch_size, epoch_size - sample_count)) # fetch minibatch.
            #trainer.train_minibatch(mb[reader.streams.features], mb[reader.streams.labels])
            trainer.train_minibatch({criterion.arguments[0]: mb[reader.streams.features], criterion.arguments[1]: mb[reader.streams.labels]})
            sample_count += mb[reader.streams.labels].num_samples                     # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True) # log progress

        loss, metric, actual_samples = progress_printer.epoch_summary(with_metric=True)
        model.save(os.path.join(model_path, "ConvNet_CIFAR10_DataAug_{}.dnn".format(epoch)))

    # return evaluation error.
    return loss, metric # return values from last epoch
开发者ID:OlegBoulanov,项目名称:CNTK,代码行数:32,代码来源:ConvNet_CIFAR10_DataAug.py

示例4: entrenar

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import train_minibatch [as 别名]
def entrenar(checkpoint, entrRuedas, entrOperaciones, input_dim, num_output_classes, testRuedas, testOperaciones):
    minibatch_size = 100;
    epocs=900;
    minibatchIteraciones = int(len(entrOperaciones) / minibatch_size);

    # Input variables denoting the features and label data
    feature = input((input_dim), np.float32)
    label = input((num_output_classes), np.float32)

    netout = crearRed(input_dim, num_output_classes, feature);

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    lr_per_minibatch=learning_rate_schedule(0.25, UnitType.minibatch)
    # Instantiate the trainer object to drive the model training
    learner = sgd(netout.parameters, lr=lr_per_minibatch)
    progress_printer = ProgressPrinter(log_to_file=checkpoint+".log", num_epochs=epocs);
    trainer = Trainer(netout, (ce, pe), learner, progress_printer)


    if os.path.isfile(checkpoint):
        trainer.restore_from_checkpoint(checkpoint);

    npentrRuedas = np.array(entrRuedas).astype(np.float32);
    npentrOperaciones = np.array(entrOperaciones).astype(np.float32);

    #iteramos una vez por cada "epoc"
    for i in range(0, epocs):
        p = np.random.permutation(len(entrRuedas));
        npentrOperaciones = npentrOperaciones[p];
        npentrRuedas = npentrRuedas[p];

        #ahora partimos los datos en "minibatches" y entrenamos
        for j in range(0, minibatchIteraciones):
            features = npentrRuedas[j*minibatch_size:(j+1)*minibatch_size];
            labels = npentrOperaciones[j*minibatch_size:(j+1)*minibatch_size];
            trainer.train_minibatch({feature: features, label: labels});
        trainer.summarize_training_progress()
        
    
    trainer.save_checkpoint(checkpoint);



    minibatchIteraciones = int(len(testOperaciones) / minibatch_size);
    avg_error = 0;
    for j in range(0, minibatchIteraciones):

        test_features = np.array(testRuedas[j*minibatch_size:(j+1)*minibatch_size]).astype(np.float32);
        test_labels = np.array(testOperaciones[j*minibatch_size:(j+1)*minibatch_size]).astype(np.float32);
        #test_features = np.array( entrRuedas[0:minibatch_size]).astype(np.float32);
        #test_labels = np.array(entrOperaciones[0:minibatch_size]).astype(np.float32);
        avg_error = avg_error + ( trainer.test_minibatch(
            {feature: test_features, label: test_labels}) / minibatchIteraciones)

    return avg_error
开发者ID:aflubenov,项目名称:neuralnetworks,代码行数:59,代码来源:CNTK_01.py

示例5: train_lm

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import train_minibatch [as 别名]
def train_lm():
    data = DataReader(token_to_id_path, segment_sepparator)

    # Create model nodes for the source and target inputs
    input_sequence, label_sequence = create_inputs(data.vocab_dim)

    # Create the model. It has three output nodes
    # z: the input to softmax that  provides the latent representation of the next token
    # cross_entropy: this is used training criterion
    # error: this a binary indicator if the model predicts the correct token
    z, cross_entropy, error = create_model(input_sequence, label_sequence, data.vocab_dim, hidden_dim)

    # For measurement we use the (build in) full softmax.
    full_ce = C.cross_entropy_with_softmax(z, label_sequence)

    # print out some useful training information
    log_number_of_parameters(z) ; print()
    
    # Run the training loop
    num_trained_samples = 0
    num_trained_samples_since_last_report = 0

    # Instantiate the trainer object to drive the model training
    lr_schedule = learning_rate_schedule(learning_rate, UnitType.sample)
    momentum_schedule = momentum_as_time_constant_schedule(momentum_as_time_constant)
    gradient_clipping_with_truncation = True
    learner = momentum_sgd(z.parameters, lr_schedule, momentum_schedule,
                            gradient_clipping_threshold_per_sample=clipping_threshold_per_sample,
                            gradient_clipping_with_truncation=gradient_clipping_with_truncation)
    trainer = Trainer(z, (cross_entropy, error), learner)
  
    for epoch_count in range(num_epochs):
        for features, labels, token_count in data.minibatch_generator(train_file_path, sequence_length, sequences_per_batch):
            arguments = ({input_sequence : features, label_sequence : labels})

            t_start = timeit.default_timer()
            trainer.train_minibatch(arguments)
            t_end =  timeit.default_timer()

            samples_per_second = token_count / (t_end - t_start)

            # Print progress report every num_samples_between_progress_report samples

            if num_trained_samples_since_last_report >= num_samples_between_progress_report or num_trained_samples == 0:
                av_ce = average_cross_entropy(full_ce, input_sequence, label_sequence, data)
                print_progress(samples_per_second, av_ce, num_trained_samples, t_start)
                num_trained_samples_since_last_report = 0

            num_trained_samples += token_count
            num_trained_samples_since_last_report += token_count

        # after each epoch save the model
        model_filename = "models/lm_epoch%d.dnn" % epoch_count
        z.save_model(model_filename)
        print("Saved model to '%s'" % model_filename)
开发者ID:BorisJineman,项目名称:CNTK,代码行数:57,代码来源:word_rnn.py

示例6: train_lm

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import train_minibatch [as 别名]
def train_lm(training_file, epochs, max_num_minibatches):

    # load the data and vocab
    data, char_to_ix, ix_to_char, data_size, vocab_dim = load_data_and_vocab(training_file)

    # Model the source and target inputs to the model
    input_sequence, label_sequence = create_inputs(vocab_dim)

    # create the model
    model = create_model(vocab_dim)
    
    # and apply it to the input sequence    
    z = model(input_sequence)

    # setup the criterions (loss and metric)
    ce = cross_entropy_with_softmax(z, label_sequence)
    errs = classification_error(z, label_sequence)

    # Instantiate the trainer object to drive the model training
    lr_per_sample = learning_parameter_schedule_per_sample(0.001)
    momentum_schedule = momentum_schedule_per_sample(0.9990913221888589)
    clipping_threshold_per_sample = 5.0
    gradient_clipping_with_truncation = True
    learner = momentum_sgd(z.parameters, lr_per_sample, momentum_schedule,
                           gradient_clipping_threshold_per_sample=clipping_threshold_per_sample,
                           gradient_clipping_with_truncation=gradient_clipping_with_truncation)
    progress_printer = ProgressPrinter(freq=100, tag='Training')
    trainer = Trainer(z, (ce, errs), learner, progress_printer)

    sample_freq = 1000
    minibatches_per_epoch = min(data_size // minibatch_size, max_num_minibatches // epochs)

    # print out some useful training information
    log_number_of_parameters(z)
    print ("Running %d epochs with %d minibatches per epoch" % (epochs, minibatches_per_epoch))
    print()

    for e in range(0, epochs):
        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        # If it's the start of the data, we specify that we are looking at a new sequence (True)
        mask = [True]
        for b in range(0, minibatches_per_epoch):
            # get the data            
            features, labels = get_data(b, minibatch_size, data, char_to_ix, vocab_dim)
            arguments = ({input_sequence : features, label_sequence : labels}, mask)
            mask = [False] 
            trainer.train_minibatch(arguments)

            global_minibatch = e*minibatches_per_epoch + b
            if global_minibatch % sample_freq == 0:
                print(sample(z, ix_to_char, vocab_dim, char_to_ix))

        model_filename = "models/shakespeare_epoch%d.dnn" % (e+1)
        z.save(model_filename)
        print("Saved model to '%s'" % model_filename)
开发者ID:AllanYiin,项目名称:CNTK,代码行数:57,代码来源:char_rnn.py

示例7: train_fast_rcnn

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import train_minibatch [as 别名]
def train_fast_rcnn(debug_output=False):
    if debug_output:
        print("Storing graphs and intermediate models to %s." % os.path.join(abs_path, "Output"))

    # Create the minibatch source
    minibatch_source = create_mb_source(image_height, image_width, num_channels,
                                        num_classes, num_rois, base_path, "train")

    # Input variables denoting features, rois and label data
    image_input = input_variable((num_channels, image_height, image_width))
    roi_input   = input_variable((num_rois, 4))
    label_input = input_variable((num_rois, num_classes))

    # define mapping from reader streams to network inputs
    input_map = {
        image_input: minibatch_source[features_stream_name],
        roi_input: minibatch_source[roi_stream_name],
        label_input: minibatch_source[label_stream_name]
    }

    # Instantiate the Fast R-CNN prediction model and loss function
    frcn_output = frcn_predictor(image_input, roi_input, num_classes)
    ce = cross_entropy_with_softmax(frcn_output, label_input, axis=1)
    pe = classification_error(frcn_output, label_input, axis=1)
    if debug_output:
        plot(frcn_output, os.path.join(abs_path, "Output", "graph_frcn.png"))

    # Set learning parameters
    l2_reg_weight = 0.0005
    lr_per_sample = [0.00001] * 10 + [0.000001] * 5 + [0.0000001]
    lr_schedule = learning_rate_schedule(lr_per_sample, unit=UnitType.sample)
    mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant)

    # Instantiate the trainer object
    learner = momentum_sgd(frcn_output.parameters, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight)
    trainer = Trainer(frcn_output, (ce, pe), learner)

    # Get minibatches of images and perform model training
    print("Training Fast R-CNN model for %s epochs." % max_epochs)
    log_number_of_parameters(frcn_output)
    progress_printer = ProgressPrinter(tag='Training', num_epochs=max_epochs)
    for epoch in range(max_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = minibatch_source.next_minibatch(min(mb_size, epoch_size-sample_count), input_map=input_map)
            trainer.train_minibatch(data)                                    # update model with it
            sample_count += trainer.previous_minibatch_sample_count          # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True)  # log progress

        progress_printer.epoch_summary(with_metric=True)
        if debug_output:
            frcn_output.save(os.path.join(abs_path, "Output", "frcn_py_%s.model" % (epoch+1)))

    return frcn_output
开发者ID:rlugojr,项目名称:CNTK,代码行数:56,代码来源:A2_RunCntk_py3.py

示例8: train_sequence_classifier

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import train_minibatch [as 别名]
def train_sequence_classifier(debug_output=False):
    input_dim = 2000
    cell_dim = 25
    hidden_dim = 25
    embedding_dim = 50
    num_output_classes = 5

    # Input variables denoting the features and label data
    features = input_variable(shape=input_dim, is_sparse=True)
    label = input_variable(num_output_classes, dynamic_axes=[
                           Axis.default_batch_axis()])

    # Instantiate the sequence classification model
    classifier_output = LSTM_sequence_classifer_net(
        features, num_output_classes, embedding_dim, hidden_dim, cell_dim)

    ce = cross_entropy_with_softmax(classifier_output, label)
    pe = classification_error(classifier_output, label)

    rel_path = r"../../../../Tests/EndToEndTests/Text/SequenceClassification/Data/Train.ctf"
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path)

    reader = create_reader(path, True, input_dim, num_output_classes)

    input_map = {
        features : reader.streams.features,
        label    : reader.streams.labels
    }

    lr_per_sample = learning_rate_schedule(0.0005, UnitType.sample)
    # Instantiate the trainer object to drive the model training
    trainer = Trainer(classifier_output, (ce, pe),
                      sgd(classifier_output.parameters, lr=lr_per_sample))

    # Get minibatches of sequences to train with and perform model training
    minibatch_size = 200
    training_progress_output_freq = 10

    if debug_output:
        training_progress_output_freq = training_progress_output_freq/3

    for i in range(251):
        mb = reader.next_minibatch(minibatch_size, input_map=input_map)
        trainer.train_minibatch(mb)
        print_training_progress(trainer, i, training_progress_output_freq)

    import copy

    evaluation_average = copy.copy(
        trainer.previous_minibatch_evaluation_average)
    loss_average = copy.copy(trainer.previous_minibatch_loss_average)

    return evaluation_average, loss_average
开发者ID:BorisJineman,项目名称:CNTK,代码行数:55,代码来源:SequenceClassification.py

示例9: train

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import train_minibatch [as 别名]
def train(reader, model, max_epochs):

    # declare the model's input dimension, so that the saved model is usable
    model.update_signature(Sequence[SparseTensor[vocab_size]])
    #model.declare_args(vocab_size)

    # criterion: (model args, labels) -> (loss, metric)
    #   here  (query, slot_labels) -> (ce, errs)
    criterion = create_criterion_function(model)

    labels = reader.streams.slot_labels
    #labels = reader.streams.intent_labels  # for intent classification

    #from cntk.graph import plot
    #plot(criterion, filename=data_dir + "/model.pdf")

    # iteration parameters  --needed here because learner schedule needs it
    epoch_size = 36000
    minibatch_size = 70
    #epoch_size = 1000 ; max_epochs = 1 # uncomment for faster testing

    # SGD parameters
    learner = adam_sgd(criterion.parameters,
                       lr         = learning_rate_schedule([0.003]*2+[0.0015]*12+[0.0003], UnitType.sample, epoch_size),
                       momentum   = momentum_as_time_constant_schedule(minibatch_size / -math.log(0.9)),
                       low_memory = True,
                       gradient_clipping_threshold_per_sample = 15,
                       gradient_clipping_with_truncation = True)

    # trainer
    trainer = Trainer(None, criterion, learner)

    # process minibatches and perform model training
    log_number_of_parameters(model) ; print()
    progress_printer = ProgressPrinter(freq=100, first=10, tag='Training') # more detailed logging
    #progress_printer = ProgressPrinter(tag='Training')

    t = 0
    for epoch in range(max_epochs):         # loop over epochs
        peek(model, epoch)                  # log some interesting info
        epoch_end = (epoch+1) * epoch_size
        while t < epoch_end:                # loop over minibatches on the epoch
            # BUGBUG: The change of minibatch_size parameter vv has no effect.
            # TODO: change all examples to this pattern; then remove this comment
            data = reader.next_minibatch(min(minibatch_size, epoch_end-t))     # fetch minibatch
            #trainer.train_minibatch(data[reader.streams.query], data[labels])  # update model with it
            trainer.train_minibatch({criterion.arguments[0]: data[reader.streams.query], criterion.arguments[1]: data[labels]})  # update model with it
            t += data[labels].num_samples                                      # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True)    # log progress
        loss, metric, actual_samples = progress_printer.epoch_summary(with_metric=True)

    return loss, metric # return values from last epoch
开发者ID:BorisJineman,项目名称:CNTK,代码行数:54,代码来源:LanguageUnderstanding.py

示例10: train_sequence_classifier

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import train_minibatch [as 别名]
def train_sequence_classifier():
    input_dim = 2000;
    cell_dim = 25;
    hidden_dim = 25;
    embedding_dim = 50;
    num_output_classes = 5;

    # Input variables denoting the features and label data
    features = input_variable(shape=input_dim, is_sparse=True)
    label = input_variable(num_output_classes, dynamic_axes = [Axis.default_batch_axis()])

    # Instantiate the sequence classification model
    classifier_output = LSTM_sequence_classifer_net(features, num_output_classes, embedding_dim, hidden_dim, cell_dim)

    ce = cross_entropy_with_softmax(classifier_output, label)
    pe = classification_error(classifier_output, label)

    rel_path = r"../../../../Tests/EndToEndTests/Text/SequenceClassification/Data/Train.ctf"
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path)
    feature_stream_name = 'features'
    labels_stream_name = 'labels'

    mb_source = text_format_minibatch_source(path, [
                    StreamConfiguration( feature_stream_name, input_dim, True, 'x' ),
                    StreamConfiguration( labels_stream_name, num_output_classes, False, 'y')], 0)

    features_si = mb_source.stream_info(features)
    labels_si = mb_source.stream_info(label)

    # Instantiate the trainer object to drive the model training
    lr = lr = learning_rates_per_sample(0.0005)
    trainer = Trainer(classifier_output, ce, pe, [sgd_learner(classifier_output.owner.parameters(), lr)])

    # Get minibatches of sequences to train with and perform model training
    minibatch_size = 200
    training_progress_output_freq = 10
    i = 0;
    while True:
        mb = mb_source.get_next_minibatch(minibatch_size)
        if  len(mb) == 0:
            break

        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        arguments = {features : mb[features_si].m_data, label : mb[labels_si].m_data}
        trainer.train_minibatch(arguments)

        print_training_progress(trainer, i, training_progress_output_freq)

        i += 1
开发者ID:junjieqian,项目名称:CNTK,代码行数:51,代码来源:SequenceClassification.py

示例11: simple_mnist

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import train_minibatch [as 别名]
def simple_mnist():
    input_dim = 784
    num_output_classes = 10
    num_hidden_layers = 1
    hidden_layers_dim = 200

    # Input variables denoting the features and label data
    input = input_variable(input_dim, np.float32)
    label = input_variable(num_output_classes, np.float32)

    # Instantiate the feedforward classification model
    scaled_input = element_times(constant((), 0.00390625), input)
    netout = fully_connected_classifier_net(scaled_input, num_output_classes, hidden_layers_dim, num_hidden_layers, sigmoid)

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    rel_path = os.path.join(*"../../../../Examples/Image/MNIST/Data/Train-28x28_cntk_text.txt".split("/"))
    path = os.path.normpath(os.path.join(abs_path, rel_path))
    if not os.path.exists(path):
        readme_file = os.path.normpath(os.path.join(os.path.dirname(path), "..", "README.md"))
        raise RuntimeError("File '%s' does not exist. Please follow the instructions at %s to download and prepare it."%(path, readme_file))
    feature_stream_name = 'features'
    labels_stream_name = 'labels'
    
    mb_source = text_format_minibatch_source(path, [ 
                    StreamConfiguration( feature_stream_name, input_dim ), 
                    StreamConfiguration( labels_stream_name, num_output_classes) ])
    features_si = mb_source.stream_info(feature_stream_name)
    labels_si = mb_source.stream_info(labels_stream_name)

    # Instantiate the trainer object to drive the model training
    lr = learning_rates_per_sample(0.003125)
    trainer = Trainer(netout, ce, pe, [sgd_learner(netout.owner.parameters(), lr)])

    # Get minibatches of images to train with and perform model training
    minibatch_size = 32
    num_samples_per_sweep = 60000
    num_sweeps_to_train_with = 1
    num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size
    training_progress_output_freq = 20
    for i in range(0, int(num_minibatches_to_train)):
        mb = mb_source.get_next_minibatch(minibatch_size)

        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        arguments = {input : mb[features_si].m_data, label : mb[labels_si].m_data}
        trainer.train_minibatch(arguments)

        print_training_progress(trainer, i, training_progress_output_freq)
开发者ID:junjieqian,项目名称:CNTK,代码行数:51,代码来源:EndToEnd.py

示例12: train_model

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import train_minibatch [as 别名]
def train_model(base_model_file, feature_node_name, last_hidden_node_name,
                image_width, image_height, num_channels, num_classes, train_map_file,
                num_epochs, max_images=-1, freeze=False):
    epoch_size = sum(1 for line in open(train_map_file))
    if max_images > 0:
        epoch_size = min(epoch_size, max_images)

    # Create the minibatch source and input variables
    minibatch_source = create_mb_source(train_map_file, image_width, image_height, num_channels, num_classes)
    image_input = input_variable((num_channels, image_height, image_width))
    label_input = input_variable(num_classes)

    # Define mapping from reader streams to network inputs
    input_map = {
        image_input: minibatch_source[features_stream_name],
        label_input: minibatch_source[label_stream_name]
    }

    # Instantiate the transfer learning model and loss function
    tl_model = create_model(base_model_file, feature_node_name, last_hidden_node_name, num_classes, image_input, freeze)
    ce = cross_entropy_with_softmax(tl_model, label_input)
    pe = classification_error(tl_model, label_input)

    # Instantiate the trainer object
    lr_schedule = learning_rate_schedule(lr_per_mb, unit=UnitType.minibatch)
    mm_schedule = momentum_schedule(momentum_per_mb)
    learner = momentum_sgd(tl_model.parameters, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight)
    trainer = Trainer(tl_model, (ce, pe), learner)

    # Get minibatches of images and perform model training
    print("Training transfer learning model for {0} epochs (epoch_size = {1}).".format(num_epochs, epoch_size))
    log_number_of_parameters(tl_model)
    progress_printer = ProgressPrinter(tag='Training', num_epochs=num_epochs)
    for epoch in range(num_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = minibatch_source.next_minibatch(min(mb_size, epoch_size-sample_count), input_map=input_map)
            trainer.train_minibatch(data)                                    # update model with it
            sample_count += trainer.previous_minibatch_sample_count          # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True)  # log progress
            if sample_count % (100 * mb_size) == 0:
                print ("Processed {0} samples".format(sample_count))

        progress_printer.epoch_summary(with_metric=True)

    return tl_model
开发者ID:FDecaYed,项目名称:CNTK,代码行数:48,代码来源:TransferLearning.py

示例13: train_sequence_classifier

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import train_minibatch [as 别名]
def train_sequence_classifier():
    input_dim = 2000
    cell_dim = 25
    hidden_dim = 25
    embedding_dim = 50
    num_output_classes = 5

    # Input variables denoting the features and label data
    features = sequence.input_variable(shape=input_dim, is_sparse=True)
    label = input_variable(num_output_classes)

    # Instantiate the sequence classification model
    classifier_output = LSTM_sequence_classifier_net(
        features, num_output_classes, embedding_dim, hidden_dim, cell_dim)

    ce = cross_entropy_with_softmax(classifier_output, label)
    pe = classification_error(classifier_output, label)

    rel_path = ("../../../Tests/EndToEndTests/Text/" +
                "SequenceClassification/Data/Train.ctf")
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path)

    reader = create_reader(path, True, input_dim, num_output_classes)

    input_map = {
            features: reader.streams.features,
            label:    reader.streams.labels
    }

    lr_per_sample = learning_parameter_schedule_per_sample(0.0005)
    # Instantiate the trainer object to drive the model training
    progress_printer = ProgressPrinter(0)
    trainer = Trainer(classifier_output, (ce, pe),
                      sgd(classifier_output.parameters, lr=lr_per_sample),
                      progress_printer)

    # Get minibatches of sequences to train with and perform model training
    minibatch_size = 200

    for i in range(255):
        mb = reader.next_minibatch(minibatch_size, input_map=input_map)
        trainer.train_minibatch(mb)

    evaluation_average = float(trainer.previous_minibatch_evaluation_average)
    loss_average = float(trainer.previous_minibatch_loss_average)
    return evaluation_average, loss_average
开发者ID:AllanYiin,项目名称:CNTK,代码行数:48,代码来源:simplernn.py

示例14: ffnet

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import train_minibatch [as 别名]
def ffnet(debug_output=False):
    input_dim = 2
    num_output_classes = 2
    num_hidden_layers = 2
    hidden_layers_dim = 50

    # Input variables denoting the features and label data
    input = input_variable((input_dim), np.float32)
    label = input_variable((num_output_classes), np.float32)

    # Instantiate the feedforward classification model
    netout = fully_connected_classifier_net(
        input, num_output_classes, hidden_layers_dim, num_hidden_layers, sigmoid)

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    # Instantiate the trainer object to drive the model training
    trainer = Trainer(netout, ce, pe, [sgd(netout.parameters(), lr=0.02)])

    # Get minibatches of training data and perform model training
    minibatch_size = 25
    num_samples_per_sweep = 10000
    num_sweeps_to_train_with = 2
    num_minibatches_to_train = (
        num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size
    training_progress_output_freq = 60

    if debug_output:
        training_progress_output_freq = training_progress_output_freq/3

    for i in range(0, int(num_minibatches_to_train)):
        features, labels = generate_random_data(
            minibatch_size, input_dim, num_output_classes)
        # Specify the mapping of input variables in the model to actual
        # minibatch data to be trained with
        trainer.train_minibatch({input: features, label: labels})
        print_training_progress(trainer, i, training_progress_output_freq)

    test_features, test_labels = generate_random_data(
        minibatch_size, input_dim, num_output_classes)
    avg_error = trainer.test_minibatch(
        {input: test_features, label: test_labels})
    return avg_error
开发者ID:hahatt,项目名称:CNTK,代码行数:46,代码来源:FeedForwardNet.py

示例15: train_model

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import train_minibatch [as 别名]
def train_model(reader, reader_test, model, epoch_size=50000, max_epochs=80):

    # declare the model's input dimension
    # Training does not require this, but it is needed for deployment.
    model.update_signature((num_channels, image_height, image_width))

    # criterion function. This is what is being trained trained.
    # Model gets "sandwiched" between normalization (not part of model proper) and criterion.
    criterion = create_criterion_function(model, normalize=lambda x: x / 256)
    #debughelpers.dump_function(criterion, 'criterion')

    #from cntk.logging.graph import plot
    #plot(criterion, filename=os.path.join(model_path, "ConvNet_CIFAR10_DataAug.pdf"))

    # iteration parameters
    minibatch_size = 64
    #epoch_size = 1000 ; max_epochs = 1 # for faster testing

    # learning parameters
    learner = momentum_sgd(model.parameters, 
                           lr       = learning_rate_schedule([0.0015625]*20+[0.00046875]*20+[0.00015625]*20+[0.000046875]*10+[0.000015625], unit=UnitType.sample, epoch_size=epoch_size),
                           momentum = momentum_as_time_constant_schedule([0]*20+[600]*20+[1200], epoch_size=epoch_size),
                           l2_regularization_weight = 0.002)
    
    # trainer object
    trainer = Trainer(None, criterion, learner)

    # perform model training
    log_number_of_parameters(model) ; print()
    progress_printer = ProgressPrinter(tag='Training', num_epochs=max_epochs)

    for epoch in range(max_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            mb = reader.next_minibatch(min(minibatch_size, epoch_size - sample_count)) # fetch minibatch.
            #trainer.train_minibatch(mb[reader.streams.features], mb[reader.streams.labels])
            trainer.train_minibatch({criterion.arguments[0]: mb[reader.streams.features], criterion.arguments[1]: mb[reader.streams.labels]})
            sample_count += mb[reader.streams.labels].num_samples                     # count samples processed so far
            progress_printer.update_with_trainer(trainer, with_metric=True) # log progress
        loss, metric, actual_samples = progress_printer.epoch_summary(with_metric=True)
        model.save(os.path.join(model_path, "ConvNet_CIFAR10_DataAug_{}.dnn".format(epoch)))

    # return evaluation error.
    return loss, metric # return values from last epoch
开发者ID:zxyinz,项目名称:CNTK,代码行数:46,代码来源:ConvNet_CIFAR10_DataAug.py


注:本文中的cntk.Trainer.train_minibatch方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。