当前位置: 首页>>代码示例>>Python>>正文


Python Trainer.save_checkpoint方法代码示例

本文整理汇总了Python中cntk.Trainer.save_checkpoint方法的典型用法代码示例。如果您正苦于以下问题:Python Trainer.save_checkpoint方法的具体用法?Python Trainer.save_checkpoint怎么用?Python Trainer.save_checkpoint使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cntk.Trainer的用法示例。


在下文中一共展示了Trainer.save_checkpoint方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: entrenar

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import save_checkpoint [as 别名]
def entrenar(checkpoint, entrRuedas, entrOperaciones, input_dim, num_output_classes, testRuedas, testOperaciones):
    minibatch_size = 100;
    epocs=900;
    minibatchIteraciones = int(len(entrOperaciones) / minibatch_size);

    # Input variables denoting the features and label data
    feature = input((input_dim), np.float32)
    label = input((num_output_classes), np.float32)

    netout = crearRed(input_dim, num_output_classes, feature);

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    lr_per_minibatch=learning_rate_schedule(0.25, UnitType.minibatch)
    # Instantiate the trainer object to drive the model training
    learner = sgd(netout.parameters, lr=lr_per_minibatch)
    progress_printer = ProgressPrinter(log_to_file=checkpoint+".log", num_epochs=epocs);
    trainer = Trainer(netout, (ce, pe), learner, progress_printer)


    if os.path.isfile(checkpoint):
        trainer.restore_from_checkpoint(checkpoint);

    npentrRuedas = np.array(entrRuedas).astype(np.float32);
    npentrOperaciones = np.array(entrOperaciones).astype(np.float32);

    #iteramos una vez por cada "epoc"
    for i in range(0, epocs):
        p = np.random.permutation(len(entrRuedas));
        npentrOperaciones = npentrOperaciones[p];
        npentrRuedas = npentrRuedas[p];

        #ahora partimos los datos en "minibatches" y entrenamos
        for j in range(0, minibatchIteraciones):
            features = npentrRuedas[j*minibatch_size:(j+1)*minibatch_size];
            labels = npentrOperaciones[j*minibatch_size:(j+1)*minibatch_size];
            trainer.train_minibatch({feature: features, label: labels});
        trainer.summarize_training_progress()
        
    
    trainer.save_checkpoint(checkpoint);



    minibatchIteraciones = int(len(testOperaciones) / minibatch_size);
    avg_error = 0;
    for j in range(0, minibatchIteraciones):

        test_features = np.array(testRuedas[j*minibatch_size:(j+1)*minibatch_size]).astype(np.float32);
        test_labels = np.array(testOperaciones[j*minibatch_size:(j+1)*minibatch_size]).astype(np.float32);
        #test_features = np.array( entrRuedas[0:minibatch_size]).astype(np.float32);
        #test_labels = np.array(entrOperaciones[0:minibatch_size]).astype(np.float32);
        avg_error = avg_error + ( trainer.test_minibatch(
            {feature: test_features, label: test_labels}) / minibatchIteraciones)

    return avg_error
开发者ID:aflubenov,项目名称:neuralnetworks,代码行数:59,代码来源:CNTK_01.py

示例2: train_and_evaluate

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import save_checkpoint [as 别名]
def train_and_evaluate(create_train_reader, test_reader, network_name, max_epochs, create_dist_learner, scale_up=False):

    set_computation_network_trace_level(0)

    # Input variables denoting the features and label data
    input_var = input_variable((num_channels, image_height, image_width))
    label_var = input_variable((num_classes))

    # create model, and configure learning parameters 
    if network_name == 'resnet20': 
        z = create_cifar10_model(input_var, 3, num_classes)
        lr_per_mb = [1.0]*80+[0.1]*40+[0.01]
    elif network_name == 'resnet110': 
        z = create_cifar10_model(input_var, 18, num_classes)
        lr_per_mb = [0.1]*1+[1.0]*80+[0.1]*40+[0.01]
    else: 
        return RuntimeError("Unknown model name!")

    # loss and metric
    ce = cross_entropy_with_softmax(z, label_var)
    pe = classification_error(z, label_var)

    # shared training parameters 
    epoch_size = 50000                    # for now we manually specify epoch size
    
    # NOTE: scaling up minibatch_size increases sample throughput. In 8-GPU machine,
    # ResNet110 samples-per-second is ~7x of single GPU, comparing to ~3x without scaling
    # up. However, bigger minimatch size on the same number of samples means less updates, 
    # thus leads to higher training error. This is a trade-off of speed and accuracy
    minibatch_size = 128 * (distributed.Communicator.num_workers() if scale_up else 1)

    momentum_time_constant = -minibatch_size/np.log(0.9)
    l2_reg_weight = 0.0001

    # Set learning parameters
    lr_per_sample = [lr/minibatch_size for lr in lr_per_mb]
    lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample)
    mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant)
    
    # trainer object
    learner     = create_dist_learner(momentum_sgd(z.parameters, lr_schedule, mm_schedule,
                                                   l2_regularization_weight = l2_reg_weight))
    trainer     = Trainer(z, ce, pe, learner)

    total_number_of_samples = max_epochs * epoch_size
    train_reader=create_train_reader(total_number_of_samples)

    # define mapping from reader streams to network inputs
    input_map = {
        input_var: train_reader.streams.features,
        label_var: train_reader.streams.labels
    }

    log_number_of_parameters(z) ; print()
    progress_printer = ProgressPrinter(tag='Training')

    # perform model training
    current_epoch=0
    updated=True
    while updated:
        data=train_reader.next_minibatch(minibatch_size, input_map=input_map) # fetch minibatch.
        updated=trainer.train_minibatch(data)                                 # update model with it
        progress_printer.update_with_trainer(trainer, with_metric=True)       # log progress
        epoch_index = int(trainer.total_number_of_samples_seen/epoch_size)
        if current_epoch != epoch_index:                                      # new epoch reached
            progress_printer.epoch_summary(with_metric=True)
            current_epoch=epoch_index
            trainer.save_checkpoint(os.path.join(model_path, network_name + "_{}.dnn".format(current_epoch)))

    # Evaluation parameters
    epoch_size     = 10000
    minibatch_size = 16

    # process minibatches and evaluate the model
    metric_numer    = 0
    metric_denom    = 0
    sample_count    = 0
    minibatch_index = 0

    while True:
        data = test_reader.next_minibatch(minibatch_size, input_map=input_map)
        if not data: break;

        local_mb_samples=data[label_var].num_samples
        metric_numer += trainer.test_minibatch(data) * local_mb_samples
        metric_denom += local_mb_samples
        minibatch_index += 1

    print("")
    print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom))
    print("")

    return metric_numer/metric_denom
开发者ID:Microsoft,项目名称:CNTK,代码行数:95,代码来源:TrainResNet_CIFAR10_Distributed.py


注:本文中的cntk.Trainer.save_checkpoint方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。