当前位置: 首页>>代码示例>>Python>>正文


Python Trainer.summarize_training_progress方法代码示例

本文整理汇总了Python中cntk.Trainer.summarize_training_progress方法的典型用法代码示例。如果您正苦于以下问题:Python Trainer.summarize_training_progress方法的具体用法?Python Trainer.summarize_training_progress怎么用?Python Trainer.summarize_training_progress使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cntk.Trainer的用法示例。


在下文中一共展示了Trainer.summarize_training_progress方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: entrenar

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import summarize_training_progress [as 别名]
def entrenar(checkpoint, entrRuedas, entrOperaciones, input_dim, num_output_classes, testRuedas, testOperaciones):
    minibatch_size = 100;
    epocs=900;
    minibatchIteraciones = int(len(entrOperaciones) / minibatch_size);

    # Input variables denoting the features and label data
    feature = input((input_dim), np.float32)
    label = input((num_output_classes), np.float32)

    netout = crearRed(input_dim, num_output_classes, feature);

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    lr_per_minibatch=learning_rate_schedule(0.25, UnitType.minibatch)
    # Instantiate the trainer object to drive the model training
    learner = sgd(netout.parameters, lr=lr_per_minibatch)
    progress_printer = ProgressPrinter(log_to_file=checkpoint+".log", num_epochs=epocs);
    trainer = Trainer(netout, (ce, pe), learner, progress_printer)


    if os.path.isfile(checkpoint):
        trainer.restore_from_checkpoint(checkpoint);

    npentrRuedas = np.array(entrRuedas).astype(np.float32);
    npentrOperaciones = np.array(entrOperaciones).astype(np.float32);

    #iteramos una vez por cada "epoc"
    for i in range(0, epocs):
        p = np.random.permutation(len(entrRuedas));
        npentrOperaciones = npentrOperaciones[p];
        npentrRuedas = npentrRuedas[p];

        #ahora partimos los datos en "minibatches" y entrenamos
        for j in range(0, minibatchIteraciones):
            features = npentrRuedas[j*minibatch_size:(j+1)*minibatch_size];
            labels = npentrOperaciones[j*minibatch_size:(j+1)*minibatch_size];
            trainer.train_minibatch({feature: features, label: labels});
        trainer.summarize_training_progress()
        
    
    trainer.save_checkpoint(checkpoint);



    minibatchIteraciones = int(len(testOperaciones) / minibatch_size);
    avg_error = 0;
    for j in range(0, minibatchIteraciones):

        test_features = np.array(testRuedas[j*minibatch_size:(j+1)*minibatch_size]).astype(np.float32);
        test_labels = np.array(testOperaciones[j*minibatch_size:(j+1)*minibatch_size]).astype(np.float32);
        #test_features = np.array( entrRuedas[0:minibatch_size]).astype(np.float32);
        #test_labels = np.array(entrOperaciones[0:minibatch_size]).astype(np.float32);
        avg_error = avg_error + ( trainer.test_minibatch(
            {feature: test_features, label: test_labels}) / minibatchIteraciones)

    return avg_error
开发者ID:aflubenov,项目名称:neuralnetworks,代码行数:59,代码来源:CNTK_01.py

示例2: train_fast_rcnn

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import summarize_training_progress [as 别名]
def train_fast_rcnn(debug_output=False):
    if debug_output:
        print("Storing graphs and intermediate models to %s." % os.path.join(abs_path, "Output"))

    # Create the minibatch source
    minibatch_source = create_mb_source(image_height, image_width, num_channels,
                                        num_classes, num_rois, base_path, "train")

    # Input variables denoting features, rois and label data
    image_input = input_variable((num_channels, image_height, image_width))
    roi_input   = input_variable((num_rois, 4))
    label_input = input_variable((num_rois, num_classes))

    # define mapping from reader streams to network inputs
    input_map = {
        image_input: minibatch_source[features_stream_name],
        roi_input: minibatch_source[roi_stream_name],
        label_input: minibatch_source[label_stream_name]
    }

    # Instantiate the Fast R-CNN prediction model and loss function
    frcn_output = frcn_predictor(image_input, roi_input, num_classes)
    ce = cross_entropy_with_softmax(frcn_output, label_input, axis=1)
    pe = classification_error(frcn_output, label_input, axis=1)
    if debug_output:
        plot(frcn_output, os.path.join(abs_path, "Output", "graph_frcn.png"))

    # Set learning parameters
    l2_reg_weight = 0.0005
    lr_per_sample = [0.00001] * 10 + [0.000001] * 5 + [0.0000001]
    lr_schedule = learning_rate_schedule(lr_per_sample, unit=UnitType.sample)
    mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant)

    # Instantiate the trainer object
    learner = momentum_sgd(frcn_output.parameters, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight)
    progress_printer = ProgressPrinter(tag='Training', num_epochs=max_epochs)
    trainer = Trainer(frcn_output, (ce, pe), learner, progress_printer)

    # Get minibatches of images and perform model training
    print("Training Fast R-CNN model for %s epochs." % max_epochs)
    log_number_of_parameters(frcn_output)
    for epoch in range(max_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = minibatch_source.next_minibatch(min(mb_size, epoch_size-sample_count), input_map=input_map)
            trainer.train_minibatch(data)                                    # update model with it
            sample_count += trainer.previous_minibatch_sample_count          # count samples processed so far

        trainer.summarize_training_progress()
        if debug_output:
            frcn_output.save(os.path.join(abs_path, "Output", "frcn_py_%s.model" % (epoch+1)))

    return frcn_output
开发者ID:BorisJineman,项目名称:CNTK,代码行数:55,代码来源:A2_RunCntk_py3.py

示例3: train_model

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import summarize_training_progress [as 别名]
def train_model(base_model_file, feature_node_name, last_hidden_node_name,
                image_width, image_height, num_channels, num_classes, train_map_file,
                num_epochs, max_images=-1, freeze=False):
    epoch_size = sum(1 for line in open(train_map_file))
    if max_images > 0:
        epoch_size = min(epoch_size, max_images)

    # Create the minibatch source and input variables
    minibatch_source = create_mb_source(train_map_file, image_width, image_height, num_channels, num_classes)
    image_input = C.input_variable((num_channels, image_height, image_width))
    label_input = C.input_variable(num_classes)

    # Define mapping from reader streams to network inputs
    input_map = {
        image_input: minibatch_source[features_stream_name],
        label_input: minibatch_source[label_stream_name]
    }

    # Instantiate the transfer learning model and loss function
    tl_model = create_model(base_model_file, feature_node_name, last_hidden_node_name, num_classes, image_input, freeze)
    ce = cross_entropy_with_softmax(tl_model, label_input)
    pe = classification_error(tl_model, label_input)

    # Instantiate the trainer object
    lr_schedule = learning_rate_schedule(lr_per_mb, unit=UnitType.minibatch)
    mm_schedule = momentum_schedule(momentum_per_mb)
    learner = momentum_sgd(tl_model.parameters, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight)
    progress_printer = ProgressPrinter(tag='Training', num_epochs=num_epochs)
    trainer = Trainer(tl_model, (ce, pe), learner, progress_printer)

    # Get minibatches of images and perform model training
    print("Training transfer learning model for {0} epochs (epoch_size = {1}).".format(num_epochs, epoch_size))
    log_number_of_parameters(tl_model)
    for epoch in range(num_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = minibatch_source.next_minibatch(min(mb_size, epoch_size-sample_count), input_map=input_map)
            trainer.train_minibatch(data)                                    # update model with it
            sample_count += trainer.previous_minibatch_sample_count          # count samples processed so far
            if sample_count % (100 * mb_size) == 0:
                print ("Processed {0} samples".format(sample_count))

        trainer.summarize_training_progress()

    return tl_model
开发者ID:OlegBoulanov,项目名称:CNTK,代码行数:47,代码来源:TransferLearning.py

示例4: ffnet

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import summarize_training_progress [as 别名]
def ffnet(data, labels):
    input_dim = 800
    num_output_classes = 3
    num_hidden_layers = 2
    hidden_layers_dim = 50

    # Input variables denoting the features and label data
    feature = input((input_dim), np.float32)
    label = input((num_output_classes), np.float32)

    netout = Sequential([For(range(num_hidden_layers), lambda i: Dense(hidden_layers_dim, activation=sigmoid)),
                         Dense(num_output_classes)])(feature)

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    lr_per_minibatch=learning_rate_schedule(0.5, UnitType.minibatch)
    # Instantiate the trainer object to drive the model training
    learner = sgd(netout.parameters, lr=lr_per_minibatch)
    progress_printer = ProgressPrinter(128)
    trainer = Trainer(netout, (ce, pe), learner, progress_printer)

    # Get minibatches of training data and perform model training
    minibatch_size = 25


    features, labels = generate_stock_data(minibatch_size);

    for i in range(1024):
    #    features, labels = generate_random_data(
    #        minibatch_size, input_dim, num_output_classes)
        # Specify the mapping of input variables in the model to actual
        # minibatch data to be trained with
        trainer.train_minibatch({feature: features, label: labels})

    trainer.summarize_training_progress()
    test_features, test_labels = generate_random_data(
        minibatch_size, input_dim, num_output_classes)
    avg_error = trainer.test_minibatch(
        {feature: test_features, label: test_labels})
    return avg_error
开发者ID:aflubenov,项目名称:neuralnetworks,代码行数:43,代码来源:tmp.py

示例5: ffnet

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import summarize_training_progress [as 别名]
def ffnet():
    input_dim = 2
    num_output_classes = 2
    num_hidden_layers = 2
    hidden_layers_dim = 50

    # Input variables denoting the features and label data
    input = input_variable((input_dim), np.float32)
    label = input_variable((num_output_classes), np.float32)

    # Instantiate the feedforward classification model
    netout = fully_connected_classifier_net(
        input, num_output_classes, hidden_layers_dim, num_hidden_layers, sigmoid)

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    lr_per_minibatch=learning_rate_schedule(0.5, UnitType.minibatch)
    # Instantiate the trainer object to drive the model training
    learner = sgd(netout.parameters, lr=lr_per_minibatch)
    progress_printer = ProgressPrinter(128)
    trainer = Trainer(netout, (ce, pe), learner, progress_printer)

    # Get minibatches of training data and perform model training
    minibatch_size = 25

    for i in range(1024):
        features, labels = generate_random_data(
            minibatch_size, input_dim, num_output_classes)
        # Specify the mapping of input variables in the model to actual
        # minibatch data to be trained with
        trainer.train_minibatch({input: features, label: labels})

    trainer.summarize_training_progress()
    test_features, test_labels = generate_random_data(
        minibatch_size, input_dim, num_output_classes)
    avg_error = trainer.test_minibatch(
        {input: test_features, label: test_labels})
    return avg_error
开发者ID:BorisJineman,项目名称:CNTK,代码行数:41,代码来源:FeedForwardNet.py

示例6: train_and_evaluate

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import summarize_training_progress [as 别名]
def train_and_evaluate(reader_train, reader_test, network_name, epoch_size, max_epochs, profiler_dir=None,
                       model_dir=None, log_dir=None, tensorboard_logdir=None, gen_heartbeat=False):

    set_computation_network_trace_level(0)

    # Input variables denoting the features and label data
    input_var = C.input_variable((num_channels, image_height, image_width), name='features')
    label_var = C.input_variable((num_classes))

    # create model, and configure learning parameters
    if network_name == 'resnet20':
        z = create_cifar10_model(input_var, 3, num_classes)
        lr_per_mb = [1.0]*80+[0.1]*40+[0.01]
    elif network_name == 'resnet110':
        z = create_cifar10_model(input_var, 18, num_classes)
        lr_per_mb = [0.1]*1+[1.0]*80+[0.1]*40+[0.01]
    else:
        raise RuntimeError("Unknown model name!")

    # loss and metric
    ce = cross_entropy_with_softmax(z, label_var)
    pe = classification_error(z, label_var)

    # shared training parameters
    minibatch_size = 128
    momentum_time_constant = -minibatch_size/np.log(0.9)
    l2_reg_weight = 0.0001

    # Set learning parameters
    lr_per_sample = [lr/minibatch_size for lr in lr_per_mb]
    lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample)
    mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant)

    # progress writers
    progress_writers = [ProgressPrinter(tag='Training', log_to_file=log_dir, num_epochs=max_epochs, gen_heartbeat=gen_heartbeat)]
    tensorboard_writer = None
    if tensorboard_logdir is not None:
        tensorboard_writer = TensorBoardProgressWriter(freq=10, log_dir=tensorboard_logdir, model=z)
        progress_writers.append(tensorboard_writer)

    # trainer object
    learner = momentum_sgd(z.parameters, lr_schedule, mm_schedule,
                           l2_regularization_weight = l2_reg_weight)
    trainer = Trainer(z, (ce, pe), learner, progress_writers)

    # define mapping from reader streams to network inputs
    input_map = {
        input_var: reader_train.streams.features,
        label_var: reader_train.streams.labels
    }

    log_number_of_parameters(z) ; print()

    # perform model training
    if profiler_dir:
        start_profiler(profiler_dir, True)

    for epoch in range(max_epochs):       # loop over epochs
        sample_count = 0
        while sample_count < epoch_size:  # loop over minibatches in the epoch
            data = reader_train.next_minibatch(min(minibatch_size, epoch_size-sample_count), input_map=input_map) # fetch minibatch.
            trainer.train_minibatch(data)                                   # update model with it
            sample_count += trainer.previous_minibatch_sample_count         # count samples processed so far

        trainer.summarize_training_progress()

        # Log mean of each parameter tensor, so that we can confirm that the parameters change indeed.
        if tensorboard_writer:
            for parameter in z.parameters:
                tensorboard_writer.write_value(parameter.uid + "/mean", reduce_mean(parameter).eval(), epoch)

        if model_dir:
            z.save(os.path.join(model_dir, network_name + "_{}.dnn".format(epoch)))
        enable_profiler() # begin to collect profiler data after first epoch

    if profiler_dir:
        stop_profiler()

    # Evaluation parameters
    test_epoch_size     = 10000
    minibatch_size = 16

    # process minibatches and evaluate the model
    metric_numer    = 0
    metric_denom    = 0
    sample_count    = 0

    while sample_count < test_epoch_size:
        current_minibatch = min(minibatch_size, test_epoch_size - sample_count)
        # Fetch next test min batch.
        data = reader_test.next_minibatch(current_minibatch, input_map=input_map)
        # minibatch data to be trained with
        metric_numer += trainer.test_minibatch(data) * current_minibatch
        metric_denom += current_minibatch
        # Keep track of the number of samples processed so far.
        sample_count += data[label_var].num_samples

    print("")
    trainer.summarize_test_progress()
    print("")
#.........这里部分代码省略.........
开发者ID:junaidnaseer,项目名称:CNTK,代码行数:103,代码来源:TrainResNet_CIFAR10.py

示例7: simple_mnist

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import summarize_training_progress [as 别名]
def simple_mnist():
    input_dim = 784
    num_output_classes = 10
    num_hidden_layers = 1
    hidden_layers_dim = 200

    # Input variables denoting the features and label data
    features = input_variable(input_dim, np.float32)
    label = input_variable(num_output_classes, np.float32)

    # Instantiate the feedforward classification model
    scaled_input = element_times(constant(0.00390625), features)
    netout = fully_connected_classifier_net(
        scaled_input, num_output_classes, hidden_layers_dim, num_hidden_layers, relu)

    ce = cross_entropy_with_softmax(netout, label)
    pe = classification_error(netout, label)

    try:
        rel_path = os.path.join(os.environ['CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY'],
                                *"Image/MNIST/v0/Train-28x28_cntk_text.txt".split("/"))
    except KeyError:
        rel_path = os.path.join(*"../Image/DataSets/MNIST/Train-28x28_cntk_text.txt".split("/"))
    path = os.path.normpath(os.path.join(abs_path, rel_path))
    check_path(path)

    reader_train = create_reader(path, True, input_dim, num_output_classes)

    input_map = {
        features: reader_train.streams.features,
        label: reader_train.streams.labels
    }

    # Instantiate progress writers.
    logdir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "mnist_log")
    tensorboard_writer = TensorBoardProgressWriter(freq=1, log_dir=logdir, model=netout)
    progress_printer = ProgressPrinter(freq=10, tag='Training')

    # Instantiate the trainer object to drive the model training
    lr_per_minibatch = learning_rate_schedule(0.2, UnitType.minibatch)
    learner = sgd(netout.parameters, lr=lr_per_minibatch)
    trainer = Trainer(netout, (ce, pe), learner, [tensorboard_writer, progress_printer])

    # Get minibatches of images to train with and perform model training
    minibatch_size = 64
    num_samples_per_sweep = 6000
    num_sweeps_to_train_with = 2
    num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size

    for minibatch_idx in range(0, int(num_minibatches_to_train)):
        trainer.train_minibatch(reader_train.next_minibatch(minibatch_size, input_map=input_map))

        # Log max/min/mean of each parameter tensor, so that we can confirm that the parameters change indeed.
        # Don't want to do that very often though, otherwise will spend too much time computing min/max/mean.
        if minibatch_idx % 10 == 9:
            for p in netout.parameters:
                tensorboard_writer.write_value(p.uid + "/max", reduce_max(p).eval(), minibatch_idx)
                tensorboard_writer.write_value(p.uid + "/min", reduce_min(p).eval(), minibatch_idx)
                tensorboard_writer.write_value(p.uid + "/mean", reduce_mean(p).eval(), minibatch_idx)

    trainer.summarize_training_progress()

    # Load test data
    try:
        rel_path = os.path.join(os.environ['CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY'],
                                *"Image/MNIST/v0/Test-28x28_cntk_text.txt".split("/"))
    except KeyError:
        rel_path = os.path.join(*"../Image/DataSets/MNIST/Test-28x28_cntk_text.txt".split("/"))
    path = os.path.normpath(os.path.join(abs_path, rel_path))
    check_path(path)

    reader_test = create_reader(path, False, input_dim, num_output_classes)

    input_map = {
        features: reader_test.streams.features,
        label: reader_test.streams.labels
    }

    # Test data for trained model
    test_minibatch_size = 1024
    num_samples = 10000
    num_minibatches_to_test = num_samples / test_minibatch_size
    test_result = 0.0
    for i in range(0, int(num_minibatches_to_test)):
        mb = reader_test.next_minibatch(test_minibatch_size, input_map=input_map)
        test_result += trainer.test_minibatch(mb)

    # Average of evaluation errors of all test minibatches
    trainer.summarize_test_progress()
    return test_result / num_minibatches_to_test
开发者ID:rlugojr,项目名称:CNTK,代码行数:92,代码来源:SimpleMNIST.py

示例8: conv3d_ucf11

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import summarize_training_progress [as 别名]
def conv3d_ucf11(train_reader, test_reader, max_epochs=30):
    # Replace 0 with 1 to get detailed log.
    set_computation_network_trace_level(0)

    # These values must match for both train and test reader.
    image_height       = train_reader.height
    image_width        = train_reader.width
    num_channels       = train_reader.channel_count
    sequence_length    = train_reader.sequence_length
    num_output_classes = train_reader.label_count

    # Input variables denoting the features and label data
    input_var = input_variable((num_channels, sequence_length, image_height, image_width), np.float32)
    label_var = input_variable(num_output_classes, np.float32)

    # Instantiate simple 3D Convolution network inspired by VGG network 
    # and http://vlg.cs.dartmouth.edu/c3d/c3d_video.pdf
    with default_options (activation=relu):
        z = Sequential([
            Convolution3D((3,3,3), 64, pad=True),
            MaxPooling((1,2,2), (1,2,2)),
            For(range(3), lambda i: [
                Convolution3D((3,3,3), [96, 128, 128][i], pad=True),
                Convolution3D((3,3,3), [96, 128, 128][i], pad=True),
                MaxPooling((2,2,2), (2,2,2))
            ]),
            For(range(2), lambda : [
                Dense(1024), 
                Dropout(0.5)
            ]),
            Dense(num_output_classes, activation=None)
        ])(input_var)
    
    # loss and classification error.
    ce = cross_entropy_with_softmax(z, label_var)
    pe = classification_error(z, label_var)

    # training config
    epoch_size     = 1322                  # for now we manually specify epoch size
    minibatch_size = 4

    # Set learning parameters
    lr_per_sample          = [0.01]*10+[0.001]*10+[0.0001]
    lr_schedule            = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample)
    momentum_time_constant = 4096
    mm_schedule            = momentum_as_time_constant_schedule([momentum_time_constant], epoch_size=epoch_size)

    # Instantiate the trainer object to drive the model training
    learner = momentum_sgd(z.parameters, lr_schedule, mm_schedule, True)
    progress_printer = ProgressPrinter(tag='Training', num_epochs=max_epochs)
    trainer = Trainer(z, (ce, pe), learner, progress_printer)

    log_number_of_parameters(z) ; print()

    # Get minibatches of images to train with and perform model training
    for epoch in range(max_epochs):       # loop over epochs
        train_reader.reset()

        while train_reader.has_more():
            videos, labels, current_minibatch = train_reader.next_minibatch(minibatch_size)
            trainer.train_minibatch({input_var : videos, label_var : labels})

        trainer.summarize_training_progress()
    
    # Test data for trained model
    epoch_size     = 332
    minibatch_size = 2

    # process minibatches and evaluate the model
    metric_numer    = 0
    metric_denom    = 0
    minibatch_index = 0

    test_reader.reset()    
    while test_reader.has_more():
        videos, labels, current_minibatch = test_reader.next_minibatch(minibatch_size)
        # minibatch data to be trained with
        metric_numer += trainer.test_minibatch({input_var : videos, label_var : labels}) * current_minibatch
        metric_denom += current_minibatch
        # Keep track of the number of samples processed so far.
        minibatch_index += 1

    print("")
    print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom))
    print("")

    return metric_numer/metric_denom
开发者ID:BorisJineman,项目名称:CNTK,代码行数:89,代码来源:Conv3D_UCF11.py

示例9: train

# 需要导入模块: from cntk import Trainer [as 别名]
# 或者: from cntk.Trainer import summarize_training_progress [as 别名]
def train(reader, model, max_epochs):
    # Input variables denoting the features and label data
    query       = Input(input_dim,  is_sparse=False)
    slot_labels = Input(num_labels, is_sparse=True)  # TODO: make sparse once it works

    # apply model to input
    z = model(query)

    # loss and metric
    ce = cross_entropy_with_softmax(z, slot_labels)
    pe = classification_error      (z, slot_labels)

    # training config
    epoch_size = 36000
    minibatch_size = 70
    num_mbs_to_show_result = 100
    momentum_time_constant = momentum_as_time_constant_schedule(minibatch_size / -math.log(0.9))  # TODO: Change to round number. This is 664.39. 700?

    lr_schedule = [0.003]*2+[0.0015]*12+[0.0003] # LR schedule over epochs (we don't run that many epochs, but if we did, these are good values)

    # trainer object
    lr_per_sample = learning_rate_schedule(lr_schedule, UnitType.sample, epoch_size)
    learner = adam_sgd(z.parameters,
                       lr=lr_per_sample, momentum=momentum_time_constant,
                       unit_gain=True,
                       low_memory=True,
                       gradient_clipping_threshold_per_sample=15, gradient_clipping_with_truncation=True)

    # more detailed logging
    progress_printer = ProgressPrinter(freq=100, first=10, tag='Training')
    #progress_printer = ProgressPrinter(tag='Training')
    tensorboard_writer = TensorBoardProgressWriter(freq=100, log_dir='atis_log', model=z)

    trainer = Trainer(z, (ce, pe), [learner], [progress_printer, tensorboard_writer])

    # define mapping from reader streams to network inputs
    input_map = {
        query       : reader.streams.query,
        slot_labels : reader.streams.slot_labels
    }

    # process minibatches and perform model training
    log_number_of_parameters(z) ; print()

    t = 0
    for epoch in range(max_epochs):         # loop over epochs
        epoch_end = (epoch+1) * epoch_size
        while t < epoch_end:               # loop over minibatches on the epoch
            # BUGBUG? The change of minibatch_size parameter vv has no effect.
            data = reader.next_minibatch(min(minibatch_size, epoch_end-t), input_map=input_map) # fetch minibatch
            trainer.train_minibatch(data)                                   # update model with it
            t += trainer.previous_minibatch_sample_count                    # count samples processed so far
            #def trace_node(name):
            #    nl = [n for n in z.parameters if n.name() == name]
            #    if len(nl) > 0:
            #        print (name, np.asarray(nl[0].value))
            #trace_node('W')
            #trace_node('stabilizer_param')
        trainer.summarize_training_progress()

    tensorboard_writer.close()
开发者ID:rlugojr,项目名称:CNTK,代码行数:63,代码来源:LanguageUnderstanding.py


注:本文中的cntk.Trainer.summarize_training_progress方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。