本文整理汇总了Python中chemreac.ReactionDiffusion.integrated_conc方法的典型用法代码示例。如果您正苦于以下问题:Python ReactionDiffusion.integrated_conc方法的具体用法?Python ReactionDiffusion.integrated_conc怎么用?Python ReactionDiffusion.integrated_conc使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类chemreac.ReactionDiffusion
的用法示例。
在下文中一共展示了ReactionDiffusion.integrated_conc方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_integrated_conc
# 需要导入模块: from chemreac import ReactionDiffusion [as 别名]
# 或者: from chemreac.ReactionDiffusion import integrated_conc [as 别名]
def test_integrated_conc(params):
geom, logx = params
N = 8192
x0, xend = 0.11, 1.37
x = np.linspace(x0, xend, N+1)
rd = ReactionDiffusion(1, [], [], [], D=[0], N=N,
x=np.log(x) if logx else x, geom=geom, logx=logx)
xc = rd.expb(rd.xcenters) if logx else rd.xcenters
y = xc*np.exp(-xc)
def primitive(t):
if geom == 'f':
return -(t+1)*np.exp(-t)
elif geom == 'c':
return 2*np.exp(-t)*np.pi*(-2 - 2*t - t**2)
elif geom == 's':
return 4*np.exp(-t)*np.pi*(-6 - 6*t - 3*t**2 - t**3)
else:
raise NotImplementedError
res = rd.integrated_conc(y)
ref = (primitive(xend) - primitive(x0))
assert abs(res - ref) < 1e-8
示例2: integrate_rd
# 需要导入模块: from chemreac import ReactionDiffusion [as 别名]
# 或者: from chemreac.ReactionDiffusion import integrated_conc [as 别名]
#.........这里部分代码省略.........
info = integr.info
if logy:
def lin_err(i, j):
linref = rd.expb(yref[i, :, j])
linerr = rd.expb(integr.yout[i, :, j])-linref
linatol = np.average(yref[i, :, j])
linrtol = linatol
return linerr/(linrtol*np.abs(linref)+linatol)
if logy:
rmsd = np.sum(lin_err(slice(None), slice(None))**2 / N, axis=1)**0.5
else:
rmsd = np.sum((yref-integr.yout)**2 / N, axis=1)**0.5
ave_rmsd_over_atol = np.average(rmsd, axis=0)/atol
if verbose:
# Print statistics
from pprint import pprint
pprint(info)
pprint(ave_rmsd_over_atol)
# Plot results
if plot:
import matplotlib.pyplot as plt
plt.figure(figsize=(6, 10))
# colors: (0.5, 0.5, 0.5), (0.5, 0.5, 1), ...
base_colors = list(product([.5, 1], repeat=3))[1:-1]
def color(ci, ti):
return np.array(base_colors[ci % len(base_colors)])*tout[ti]/tend
for ti in range(nt):
plt.subplot(4, 1, 1)
for si in range(nspecies):
plt.plot(rd.xcenters, integr.Cout[ti, :, si], c=color(si, ti),
label=None if ti < nt - 1 else rd.substance_names[si])
plt.subplot(4, 1, 2)
for si in range(nspecies):
plt.plot(rd.xcenters, rd.expb(yref[ti, :, si]) if logy
else yref[ti, :, si], c=color(si, ti))
plt.subplot(4, 1, 3)
if logy:
for si in range(nspecies):
plt.plot(rd.xcenters, lin_err(ti, si)/atol,
c=color(si, ti))
else:
for si in range(nspecies):
plt.plot(
rd.xcenters,
(yref[ti, :, si] - integr.yout[ti, :, si])/atol,
c=color(si, ti))
if N < vline_limit:
for idx in range(1, 4):
plt.subplot(4, 1, idx)
for bi in range(N):
plt.axvline(rd.x[bi], color='gray')
plt.subplot(4, 1, 1)
plt.title('Simulation (N={})'.format(rd.N))
plt.xlabel('x / m')
plt.ylabel('C / M')
plt.gca().set_yscale(yscale)
plt.legend()
plt.subplot(4, 1, 2)
plt.title('Analytic solution')
plt.gca().set_yscale(yscale)
plt.subplot(4, 1, 3)
plt.title('Linear rel. error / Abs. tol. (={})'.format(atol))
plt.subplot(4, 1, 4)
plt.title('RMS error vs. time'.format(atol))
tspan = [tout[0], tout[-1]]
for si in range(nspecies):
plt.plot(tout, rmsd[:, si] / atol, c=color(si, -1))
plt.plot(tspan, [ave_rmsd_over_atol[si]]*2,
c=color(si, -1), ls='--')
plt.xlabel('Time / s')
plt.ylabel(r'$\sqrt{\langle E^2 \rangle} / atol$')
plt.tight_layout()
save_and_or_show_plot(savefig=savefig)
if check_conserv:
tot_amount = np.zeros(tout.size)
for ti in range(tout.size):
for si in range(nspecies):
tot_amount[ti] += rd.integrated_conc(integr.yout[ti, :, si])
if plot:
plt.plot(tout, tot_amount)
plt.show()
assert np.allclose(tot_amount[0], tot_amount[1:])
return tout, integr.yout, info, ave_rmsd_over_atol, rd, rmsd
示例3: integrate_rd
# 需要导入模块: from chemreac import ReactionDiffusion [as 别名]
# 或者: from chemreac.ReactionDiffusion import integrated_conc [as 别名]
#.........这里部分代码省略.........
z_chg=[1, -1],
mobility=[mobility, -mobility],
x=x,
geom=geom,
logy=logy,
logt=logt,
logx=logx,
nstencil=nstencil,
lrefl=lrefl,
rrefl=rrefl,
auto_efield=True,
surf_chg=surf_chg,
eps_rel=eps_rel, # water at 20 deg C
faraday_const=1,
vacuum_permittivity=1,
use_log2=use_log2
)
# Initial conditions
sigma = (xend-x0)/sigma_q
sigma = [(1-sigma_skew)*sigma, sigma_skew*sigma]
y0 = np.vstack(pair_of_gaussians(
rd.xcenters, [base+offset, base-offset], sigma, logy, logx, geom, use_log2)).transpose()
if logy:
y0 = sigm(y0)
if plot:
# Plot initial E-field
import matplotlib.pyplot as plt
plt.figure(figsize=(6, 10))
rd.calc_efield((rd.expb(y0) if logy else y0).flatten())
plt.subplot(4, 1, 3)
plt.plot(rd.xcenters, rd.efield, label="E at t=t0")
plt.plot(rd.xcenters, rd.xcenters*0, label="0")
# Run the integration
tout = np.linspace(t0, tend, nt)
integr = run(rd, y0, tout,
atol=atol, rtol=rtol, sigm_damp=True,
C0_is_log=logy,
with_jacobian=(not num_jacobian), method=method)
Cout = integr.Cout
if verbose:
print(integr.info)
# Plot results
if plot:
def _plot(y, ttl=None, **kwargs):
plt.plot(rd.xcenters, y, **kwargs)
plt.xlabel((('log_%s({})' % ('2' if use_log2 else 'e')) if logx else '{}').format('x / m'))
plt.ylabel('C / M')
if ttl:
plt.title(ttl)
for i in range(nt):
plt.subplot(4, 1, 1)
c = 1-tout[i]/tend
c = (1.0-c, .5-c/2, .5-c/2)
_plot(Cout[i, :, 0], 'Simulation (N={})'.format(rd.N),
c=c, label='$z_A=1$' if i == nt-1 else None)
_plot(Cout[i, :, 1], c=c[::-1],
label='$z_B=-1$' if i == nt-1 else None)
plt.legend()
plt.subplot(4, 1, 2)
delta_y = Cout[i, :, 0] - Cout[i, :, 1]
_plot(delta_y, 'Diff'.format(rd.N),
c=[c[2], c[0], c[1]],
label='A-B (positive excess)' if i == nt-1 else None)
plt.legend(loc='best')
plt.xlabel("$x~/~m$")
plt.ylabel(r'Concentration / M')
ylim = plt.gca().get_ylim()
if N < 100:
plt.vlines(rd.x, ylim[0], ylim[1],
linewidth=1.0, alpha=0.2, colors='gray')
plt.subplot(4, 1, 3)
plt.plot(rd.xcenters, rd.efield, label="E at t=tend")
plt.xlabel("$x~/~m$")
plt.ylabel("$E~/~V\cdot m^{-1}$")
plt.legend()
for i in range(3):
plt.subplot(4, 1, i+1)
ylim = plt.gca().get_ylim()
for d in (-1, 1):
center_loc = [x0+(base+d*offset)*(xend-x0)]*2
plt.plot(rd.logb(center_loc) if logx else center_loc,
ylim, '--k')
plt.subplot(4, 1, 4)
for i in range(n):
amount = [rd.integrated_conc(Cout[j, :, i]) for j in range(nt)]
plt.plot(tout, amount, c=c[::(1, -1)[i]], label=chr(ord('A')+i))
plt.xlabel('Time / s')
plt.ylabel('Amount / mol')
plt.legend(loc='best')
plt.tight_layout()
save_and_or_show_plot(savefig=savefig)
return tout, Cout, integr.info, rd