当前位置: 首页>>代码示例>>Python>>正文


Python ReactionDiffusion.alloc_jout_compressed方法代码示例

本文整理汇总了Python中chemreac.ReactionDiffusion.alloc_jout_compressed方法的典型用法代码示例。如果您正苦于以下问题:Python ReactionDiffusion.alloc_jout_compressed方法的具体用法?Python ReactionDiffusion.alloc_jout_compressed怎么用?Python ReactionDiffusion.alloc_jout_compressed使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在chemreac.ReactionDiffusion的用法示例。


在下文中一共展示了ReactionDiffusion.alloc_jout_compressed方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_n_jac_diags

# 需要导入模块: from chemreac import ReactionDiffusion [as 别名]
# 或者: from chemreac.ReactionDiffusion import alloc_jout_compressed [as 别名]
def test_n_jac_diags(n_jac_diags):
    N, n, nstencil = 10, 1, 7
    rd = ReactionDiffusion(n, [], [], [], N=N, nstencil=nstencil,
                           n_jac_diags=n_jac_diags, D=[9])
    assert np.allclose(rd.xcenters,
                       [.05, .15, .25, .35, .45, .55, .65, .75, .85, .95])
    y0 = np.ones(N)

    # Dense
    jref_cdns = np.zeros((n*N, n*N), order='F')
    jout_cdns = np.zeros((n*N, n*N), order='F')
    sm = SymRD.from_rd(rd)
    sm.dense_jac(0.0, y0.flatten(), jref_cdns)
    rd.dense_jac_cmaj(0.0, y0.flatten(), jout_cdns)
    assert np.allclose(jout_cdns, jref_cdns)

    # Banded
    jref_cbnd = rd.alloc_jout(order='F', pad=0)
    jout_cbnd = rd.alloc_jout(order='F')
    sm.banded_jac(0.0, y0.flatten(), jref_cbnd)
    rd.banded_jac_cmaj(0.0, y0.flatten(), jout_cbnd)
    assert np.allclose(jout_cbnd[rd.n*rd.n_jac_diags:, :], jref_cbnd)

    # Compressed
    jref_cmprs = rd.alloc_jout_compressed()
    jout_cmprs = rd.alloc_jout_compressed()
    sm.compressed_jac(0.0, y0.flatten(), jref_cmprs)
    rd.compressed_jac_cmaj(0.0, y0.flatten(), jout_cmprs)
    assert np.allclose(jout_cmprs, jref_cmprs)
开发者ID:chemreac,项目名称:chemreac,代码行数:31,代码来源:test_reactiondiffusion.py

示例2: test_ReactionDiffusion__only_1_species_diffusion_7bins

# 需要导入模块: from chemreac import ReactionDiffusion [as 别名]
# 或者: from chemreac.ReactionDiffusion import alloc_jout_compressed [as 别名]
def test_ReactionDiffusion__only_1_species_diffusion_7bins(log):
    # Diffusion without reaction
    N = 7
    nstencil = 5
    nsidep = (nstencil-1)//2
    t0 = 3.0
    logy, logt = log
    D = 2.0
    y0 = np.array([12, 8, 11, 5, 7, 4, 9], dtype=np.float64)
    x = np.array([3, 5, 13, 17, 23, 25, 35, 37], dtype=np.float64)
    rd = ReactionDiffusion(1, [], [], [], D=[D], x=x,
                           logy=logy, logt=logt, nstencil=nstencil,
                           lrefl=False, rrefl=False)
    weights = [
        [951/8800, -716/2475, 100/297, -75/352, 311/5400],
        [321/8800, -161/2475, 7/297, 3/352, -19/5400],
        [-39/8800, 109/2475, -127/1485, 87/1760, -19/5400],
        [-2/693, 38/675, -129/1100, 7/108, -1/1050],
        [0, 9/160, -7/72, 2/45, -1/288],
        [-8/1575, 9/400, 0, -19/450, 25/1008],
        [16/315, -9/32, 31/72, -13/45, 179/2016]
    ]
    assert np.allclose(rd.D_weight, np.array(weights).flatten())

    lb = stencil_pxci_lbounds(nstencil, N)
    yi = pxci_to_bi(nstencil, N)
    fref = np.array([sum([D*weights[i][j]*y0[yi[j+lb[i]]] for j
                          in range(nstencil)]) for i in range(N)])

    if logy:
        fref /= y0
    if logt:
        fref *= t0

    jref = np.zeros((N, N))
    for i in range(N):
        for j in range(max(0, i-1), min(N, i+2)):
            if logy:
                if j == i+1 or j == i-1:
                    for k in range(nstencil):
                        if yi[k+lb[i]] == j:
                            jref[i, j] += D*weights[i][k]*y0[j]/y0[i]
                else:  # j == i
                    assert i == j
                    for k in range(nstencil):
                        cyi = yi[k+lb[i]]
                        if i == cyi:
                            continue
                        jref[i, i] -= D*weights[i][k]*y0[cyi]/y0[i]
            else:
                if i-1 <= j and j <= i+1:
                    jref[i, j] = D*weights[i][j-lb[i]+nsidep]
    if logt:
        jref *= t0
    t = rd.logb(t0) if logt else t0
    y = rd.logb(y0) if logy else y0
    _test_f_and_dense_jac_rmaj(rd, t, y, fref, jref)

    jout_bnd = np.zeros((4, N), order='F')
    rd.banded_jac_cmaj(t, y, jout_bnd)
    jref_bnd = get_banded(jref, 1, N)
    assert np.allclose(jout_bnd[1:, :], jref_bnd)

    # compressed_jac_cmaj actually use all diagonals
    rd = ReactionDiffusion(1, [], [], [], D=[D], x=x,
                           logy=logy, logt=logt, nstencil=nstencil,
                           lrefl=False, rrefl=False, n_jac_diags=2)
    jout_cmprs = rd.alloc_jout_compressed()
    rd.compressed_jac_cmaj(t, y, jout_cmprs)
    from block_diag_ilu import Compressed_from_dense

    jref2 = np.zeros((N, N))
    for i in range(N):
        for j in range(max(0, i-2), min(N, i+3)):
            if logy:
                if i-2 <= j <= i+2:
                    if i == j:
                        for k in range(nstencil):
                            cyi = yi[k+lb[i]]
                            if i == cyi:
                                continue
                            jref2[i, i] -= D*weights[i][k]*y0[cyi]/y0[i]
                    else:
                        for k in range(nstencil):
                            if yi[k+lb[i]] == j:
                                jref2[i, j] += D*weights[i][k]*y0[j]/y0[i]

            else:
                if i-2 <= j <= i+2:
                    jref2[i, j] = D*weights[i][j-lb[i]+nsidep]
    if logt:
        jref2 *= t0
    jref_cmprs = Compressed_from_dense(jref2, N, 1, nsidep).data
    assert np.allclose(jout_cmprs, jref_cmprs)
开发者ID:chemreac,项目名称:chemreac,代码行数:96,代码来源:test_reactiondiffusion.py


注:本文中的chemreac.ReactionDiffusion.alloc_jout_compressed方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。