本文整理汇总了Python中chemreac.ReactionDiffusion.expb方法的典型用法代码示例。如果您正苦于以下问题:Python ReactionDiffusion.expb方法的具体用法?Python ReactionDiffusion.expb怎么用?Python ReactionDiffusion.expb使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类chemreac.ReactionDiffusion
的用法示例。
在下文中一共展示了ReactionDiffusion.expb方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_integrated_conc
# 需要导入模块: from chemreac import ReactionDiffusion [as 别名]
# 或者: from chemreac.ReactionDiffusion import expb [as 别名]
def test_integrated_conc(params):
geom, logx = params
N = 8192
x0, xend = 0.11, 1.37
x = np.linspace(x0, xend, N+1)
rd = ReactionDiffusion(1, [], [], [], D=[0], N=N,
x=np.log(x) if logx else x, geom=geom, logx=logx)
xc = rd.expb(rd.xcenters) if logx else rd.xcenters
y = xc*np.exp(-xc)
def primitive(t):
if geom == 'f':
return -(t+1)*np.exp(-t)
elif geom == 'c':
return 2*np.exp(-t)*np.pi*(-2 - 2*t - t**2)
elif geom == 's':
return 4*np.exp(-t)*np.pi*(-6 - 6*t - 3*t**2 - t**3)
else:
raise NotImplementedError
res = rd.integrated_conc(y)
ref = (primitive(xend) - primitive(x0))
assert abs(res - ref) < 1e-8
示例2: integrate_rd
# 需要导入模块: from chemreac import ReactionDiffusion [as 别名]
# 或者: from chemreac.ReactionDiffusion import expb [as 别名]
def integrate_rd(N=64, geom='f', nspecies=1, nstencil=3,
D=2e-3, t0=3.0, tend=7., x0=0.0, xend=1.0, center=None,
nt=42, logt=False, logy=False, logx=False,
random=False, p=0, a=0.2,
linterpol=False, rinterpol=False, ilu_limit=5.0,
n_jac_diags=-1, num_jacobian=False,
method='bdf', integrator='cvode', iter_type='undecided',
linear_solver='default',
atol=1e-8, rtol=1e-10,
efield=False, random_seed=42, mobility=0.01,
plot=False, savefig='None', verbose=False, yscale='linear',
vline_limit=100, use_log2=False, Dexpr='[D]*nspecies', check_conserv=False
): # remember: anayltic_N_scaling.main kwargs
# Example:
# python3 analytic_diffusion.py --plot --Dexpr "D*np.exp(10*(x[:-1]+np.diff(x)/2))"
if t0 == 0.0:
raise ValueError("t0==0 => Dirac delta function C0 profile.")
if random_seed:
np.random.seed(random_seed)
# decay = (nspecies > 1)
# n = 2 if decay else 1
center = float(center or x0)
tout = np.linspace(t0, tend, nt)
assert geom in 'fcs'
analytic = {
'f': flat_analytic,
'c': cylindrical_analytic,
's': spherical_analytic
}[geom]
# Setup the grid
logx0 = math.log(x0) if logx else None
logxend = math.log(xend) if logx else None
if logx and use_log2:
logx0 /= math.log(2)
logxend /= math.log(2)
_x0 = logx0 if logx else x0
_xend = logxend if logx else xend
x = np.linspace(_x0, _xend, N+1)
if random:
x += (np.random.random(N+1)-0.5)*(_xend-_x0)/(N+2)
def _k(si):
return (si+p)*math.log(a+1)
k = [_k(i+1) for i in range(nspecies-1)]
rd = ReactionDiffusion(
nspecies,
[[i] for i in range(nspecies-1)],
[[i+1] for i in range(nspecies-1)],
k,
N,
D=eval(Dexpr),
z_chg=[1]*nspecies,
mobility=[mobility]*nspecies,
x=x,
geom=geom,
logy=logy,
logt=logt,
logx=logx,
nstencil=nstencil,
lrefl=not linterpol,
rrefl=not rinterpol,
ilu_limit=ilu_limit,
n_jac_diags=n_jac_diags,
use_log2=use_log2
)
if efield:
if geom != 'f':
raise ValueError("Only analytic sol. for flat drift implemented.")
rd.efield = _efield_cb(rd.xcenters)
# Calc initial conditions / analytic reference values
t = tout.copy().reshape((nt, 1))
yref = analytic(rd.xcenters, t, D, center, x0, xend,
-mobility if efield else 0, logy, logx, use_log2).reshape(nt, N, 1)
if nspecies > 1:
from batemaneq import bateman_parent
bateman_out = np.array(bateman_parent(k, tout)).T
terminal = (1 - np.sum(bateman_out, axis=1)).reshape((nt, 1))
bateman_out = np.concatenate((bateman_out, terminal), axis=1).reshape(
(nt, 1, nspecies))
if logy:
yref = yref + rd.logb(bateman_out)
else:
yref = yref * bateman_out
# Run the integration
integr = run(rd, yref[0, ...], tout, atol=atol, rtol=rtol,
with_jacobian=(not num_jacobian), method=method,
iter_type=iter_type, linear_solver=linear_solver,
C0_is_log=logy, integrator=integrator)
info = integr.info
if logy:
def lin_err(i, j):
linref = rd.expb(yref[i, :, j])
linerr = rd.expb(integr.yout[i, :, j])-linref
#.........这里部分代码省略.........
示例3: integrate_rd
# 需要导入模块: from chemreac import ReactionDiffusion [as 别名]
# 或者: from chemreac.ReactionDiffusion import expb [as 别名]
def integrate_rd(D=-3e-1, t0=0.0, tend=7., x0=0.1, xend=1.0, N=1024,
base=0.5, offset=0.25, nt=25, geom='f',
logt=False, logy=False, logx=False, random=False,
nstencil=3, lrefl=False, rrefl=False,
num_jacobian=False, method='bdf', plot=False,
savefig='None', atol=1e-6, rtol=1e-6, random_seed=42,
surf_chg=(0.0, 0.0), sigma_q=101, sigma_skew=0.5,
verbose=False, eps_rel=80.10, use_log2=False):
"""
A negative D (diffusion coefficent) denotes:
mobility := -D
D := 0
A positive D calculates mobility from Einstein-Smoluchowski relation
"""
assert 0 <= base and base <= 1
assert 0 <= offset and offset <= 1
if random_seed:
np.random.seed(random_seed)
n = 2
if D < 0:
mobility = -D
D = 0
else:
mobility = electrical_mobility_from_D(D, 1, 298.15)
print(D, mobility)
# Setup the grid
logb = (lambda arg: log(arg)/log(2)) if use_log2 else log
_x0 = logb(x0) if logx else x0
_xend = logb(xend) if logx else xend
x = np.linspace(_x0, _xend, N+1)
if random:
x += (np.random.random(N+1)-0.5)*(_xend-_x0)/(N+2)
# Setup the system
stoich_active = []
stoich_prod = []
k = []
rd = ReactionDiffusion(
n, stoich_active, stoich_prod, k, N,
D=[D, D],
z_chg=[1, -1],
mobility=[mobility, -mobility],
x=x,
geom=geom,
logy=logy,
logt=logt,
logx=logx,
nstencil=nstencil,
lrefl=lrefl,
rrefl=rrefl,
auto_efield=True,
surf_chg=surf_chg,
eps_rel=eps_rel, # water at 20 deg C
faraday_const=1,
vacuum_permittivity=1,
use_log2=use_log2
)
# Initial conditions
sigma = (xend-x0)/sigma_q
sigma = [(1-sigma_skew)*sigma, sigma_skew*sigma]
y0 = np.vstack(pair_of_gaussians(
rd.xcenters, [base+offset, base-offset], sigma, logy, logx, geom, use_log2)).transpose()
if logy:
y0 = sigm(y0)
if plot:
# Plot initial E-field
import matplotlib.pyplot as plt
plt.figure(figsize=(6, 10))
rd.calc_efield((rd.expb(y0) if logy else y0).flatten())
plt.subplot(4, 1, 3)
plt.plot(rd.xcenters, rd.efield, label="E at t=t0")
plt.plot(rd.xcenters, rd.xcenters*0, label="0")
# Run the integration
tout = np.linspace(t0, tend, nt)
integr = run(rd, y0, tout,
atol=atol, rtol=rtol, sigm_damp=True,
C0_is_log=logy,
with_jacobian=(not num_jacobian), method=method)
Cout = integr.Cout
if verbose:
print(integr.info)
# Plot results
if plot:
def _plot(y, ttl=None, **kwargs):
plt.plot(rd.xcenters, y, **kwargs)
plt.xlabel((('log_%s({})' % ('2' if use_log2 else 'e')) if logx else '{}').format('x / m'))
plt.ylabel('C / M')
if ttl:
plt.title(ttl)
for i in range(nt):
#.........这里部分代码省略.........