当前位置: 首页>>代码示例>>Python>>正文


Python FunctionSet.l4方法代码示例

本文整理汇总了Python中chainer.FunctionSet.l4方法的典型用法代码示例。如果您正苦于以下问题:Python FunctionSet.l4方法的具体用法?Python FunctionSet.l4怎么用?Python FunctionSet.l4使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在chainer.FunctionSet的用法示例。


在下文中一共展示了FunctionSet.l4方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Replay

# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l4 [as 别名]
class DN_class:
    # Hyper-Parameters
    gamma = 0.99  # Discount factor
    initial_exploration = 100#10**4  # Initial exploratoin. original: 5x10^4
    replay_size = 32  # Replay (batch) size
    target_model_update_freq = 10**4  # Target update frequancy. original: 10^4
    data_size = 10**5  # Data size of history. original: 10^6

    def __init__(self, enable_controller=[0, 1, 3, 4]):
        self.num_of_actions = len(enable_controller)
        self.enable_controller = enable_controller  # Default setting : "Breakout"

        print "Initializing DN..."
#	Initialization of Chainer 1.1.0 or older.
#        print "CUDA init"
#        cuda.init()

        print "Model Building"
        self.model = FunctionSet(
            l1=F.Convolution2D(4, 32, ksize=8, stride=4, nobias=False, wscale=np.sqrt(2)),
            l2=F.Convolution2D(32, 64, ksize=4, stride=2, nobias=False, wscale=np.sqrt(2)),
            l3=F.Convolution2D(64, 64, ksize=3, stride=1, nobias=False, wscale=np.sqrt(2)),
            l4=F.Linear(3136, 256, wscale=np.sqrt(2)),
            l5=F.Linear(3136, 256, wscale=np.sqrt(2)),
            l6=F.Linear(256, 1, initialW=np.zeros((1, 256), dtype=np.float32)),
            l7=F.Linear(256, self.num_of_actions, initialW=np.zeros((self.num_of_actions, 256),
                                               dtype=np.float32)),
            q_value=DN_out.DN_out(1, self.num_of_actions, self.num_of_actions, nobias = True)
        ).to_gpu()
        
        if args.resumemodel:
            # load saved model
            serializers.load_npz(args.resumemodel, self.model)
            print "load model from resume.model"
        

        self.model_target = copy.deepcopy(self.model)

        print "Initizlizing Optimizer"
        self.optimizer = optimizers.RMSpropGraves(lr=0.00025, alpha=0.95, momentum=0.95, eps=0.0001)
        self.optimizer.setup(self.model.collect_parameters())

        # History Data :  D=[s, a, r, s_dash, end_episode_flag]
        if args.resumeD1 and args.resumeD2:
            # load saved D1 and D2
            npz_tmp1 = np.load(args.resumeD1)
            print "finished loading half of D data"
            npz_tmp2 = np.load(args.resumeD2)
            self.D = [npz_tmp1['D0'],
                      npz_tmp1['D1'],
                      npz_tmp1['D2'],
                      npz_tmp2['D3'],
                      npz_tmp2['D4']]
            npz_tmp1.close()
            npz_tmp2.close()
            print "loaded stored all D data"
        else:
            self.D = [np.zeros((self.data_size, 4, 84, 84), dtype=np.uint8),
                      np.zeros(self.data_size, dtype=np.uint8),
                      np.zeros((self.data_size, 1), dtype=np.int8),
                      np.zeros((self.data_size, 4, 84, 84), dtype=np.uint8),
                      np.zeros((self.data_size, 1), dtype=np.bool)]
            print "initialized D data"

    def forward(self, state, action, Reward, state_dash, episode_end):
        num_of_batch = state.shape[0]
        s = Variable(state)
        s_dash = Variable(state_dash)

        Q = self.Q_func(s)  # Get Q-value
        # Generate Target Signals
        tmp2 = self.Q_func(s_dash)
        tmp2 = list(map(np.argmax, tmp2.data.get()))  # argmaxQ(s',a)
        tmp = self.Q_func_target(s_dash)  # Q'(s',*)
        tmp = list(tmp.data.get())
        # select Q'(s',*) due to argmaxQ(s',a)
        res1 = []
        for i in range(num_of_batch):
            res1.append(tmp[i][tmp2[i]])

        #max_Q_dash = np.asanyarray(tmp, dtype=np.float32)
        max_Q_dash = np.asanyarray(res1, dtype=np.float32)
        target = np.asanyarray(Q.data.get(), dtype=np.float32)
        for i in xrange(num_of_batch):
            if not episode_end[i][0]:
                tmp_ = np.sign(Reward[i]) + self.gamma * max_Q_dash[i]
            else:
                tmp_ = np.sign(Reward[i])

            action_index = self.action_to_index(action[i])
            target[i, action_index] = tmp_
        # TD-error clipping
        td = Variable(cuda.to_gpu(target)) - Q  # TD error
        td_tmp = td.data + 1000.0 * (abs(td.data) <= 1)  # Avoid zero division
        td_clip = td * (abs(td.data) <= 1) + td/abs(td_tmp) * (abs(td.data) > 1)

        zero_val = Variable(cuda.to_gpu(np.zeros((self.replay_size, self.num_of_actions), dtype=np.float32)))
        loss = F.mean_squared_error(td_clip, zero_val)
        return loss, Q

#.........这里部分代码省略.........
开发者ID:masataka46,项目名称:DuelingNetwork,代码行数:103,代码来源:dn_agent.py

示例2: Replay

# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l4 [as 别名]
class DQN_class:
	gamma = 0.99
	initial_exploration = 10**2
	replay_size = 32  # Replay (batch) size
	target_model_update_freq = 10**4  # Target update frequancy. original: 10^4
	data_size = 10**2

	def __init__(self, enable_controller=[0, 1, 2, 3, 4, 5, 6, 7, 8]):
		#	"""	[ 0, 0],
		#		[ 0, 1],
		#		[ 0,-1],
		#		[ 1, 0],
		#		[ 1, 1],
		#		[ 1,-1],
		#		[-1, 0],
		#		[-1, 1],
		#		[-1,-1]]):"""
		self.num_of_actions = len(enable_controller)
		self.enable_controller = enable_controller

		print "Initializing DQN..."
		print "CUDA init"
		#cuda.init()

		print "Model Building"
		self.model = FunctionSet(
			l1 = F.Linear(INPUT_SIZE, 5000),	# input map[100, 100] + v[2] + w[1] + wp[2]
			l2 = F.Linear(5000, 1000),
			l3 = F.Linear(1000, 100),
			l4 = F.Linear(100, self.num_of_actions,
						initialW=np.zeros((self.num_of_actions, 100), dtype=np.float32))
		).to_gpu()

		self.model_target = copy.deepcopy(self.model)
		
		print "Initizlizing Optimizer"
		self.optimizer = optimizers.RMSpropGraves(lr=0.00025, alpha=0.95, momentum=0.95, eps=0.0001)	### 重要!!!!  RMSProp!!
		self.optimizer.setup(self.model.collect_parameters())

		# History Data :  D=[s, a, r, s_dash, end_episode_flag]
		self.D = [np.zeros((self.data_size, INPUT_SIZE), dtype=np.float32),
				  np.zeros(self.data_size, dtype=np.uint8),
				  np.zeros((self.data_size, 1), dtype=np.float32),
				  np.zeros((self.data_size, INPUT_SIZE), dtype=np.float32),
				  np.zeros((self.data_size, 1), dtype=np.bool)]
		#self.D = [np.zeros((self.data_size, INPUT_SIZE), dtype=np.uint8),
		#		  np.zeros(self.data_size, dtype=np.uint8),
		#		  np.zeros((self.data_size, 1), dtype=np.int8),
		#		  np.zeros((self.data_size, INPUT_SIZE), dtype=np.uint8),
		#		  np.zeros((self.data_size, 1), dtype=np.bool)]

	def forward(self, state, action, Reward, state_dash, episode_end):
		num_of_batch = state.shape[0]
		s = Variable(state)
		s_dash = Variable(state_dash)

		Q = self.Q_func(s)  # Get Q-value

		# Generate Target Signals
		tmp = self.Q_func_target(s_dash)  # Q(s',*)
		tmp = list(map(np.max, tmp.data.get()))  # max_a Q(s',a)
		max_Q_dash = np.asanyarray(tmp, dtype=np.float32)
		target = np.asanyarray(Q.data.get(), dtype=np.float32)

		for i in xrange(num_of_batch):
			if not episode_end[i][0]:
				tmp_ = np.sign(Reward[i]) + self.gamma * max_Q_dash[i]
			else:
				tmp_ = np.sign(Reward[i])

			#action_index = self.action_to_index(action[i])
			#target[i, action_index] = tmp_
			target[i, action[i]] = tmp_

		# TD-error clipping
		td = Variable(cuda.to_gpu(target)) - Q  # TD error
		#print "td-error"
		print "np.max(td.data) : ",
		print np.max(td.data.get())
		# 何のためにあるのか不明	td = td_clipとなっている
		td_tmp = td.data + 1000.0 * (abs(td.data) <= 1)  # Avoid zero division
		td_clip = td * (abs(td.data) <= 1) + td/abs(td_tmp) * (abs(td.data) > 1)
		#print "td_clip.data :",
		#print td_clip.data

		zero_val = Variable(cuda.to_gpu(np.zeros((self.replay_size, self.num_of_actions))).astype(np.float32))
		#zero_val = Variable(cuda.to_gpu(np.zeros((self.replay_size, self.num_of_actions))))
		loss = F.mean_squared_error(td_clip, zero_val)
		return loss, Q

	# Dataを保存
	def stockExperience(self, time,
						state, action, reward, state_dash,
						episode_end_flag):
		data_index = time % self.data_size

		if episode_end_flag is True:
			self.D[0][data_index] = state
			self.D[1][data_index] = action
			self.D[2][data_index] = reward
#.........这里部分代码省略.........
开发者ID:tk0khmhm,项目名称:deep_reinforcement_learning,代码行数:103,代码来源:192.168.0.move_roomba_random.py

示例3: Replay

# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l4 [as 别名]
class QNet:
    # Hyper-Parameters
    gamma = 0.99  # Discount factor
    initial_exploration = 10**3  # Initial exploratoin. original: 5x10^4
    replay_size = 32  # Replay (batch) size
    target_model_update_freq = 10**4  # Target update frequancy. original: 10^4
    data_size = 10**5  # Data size of history. original: 10^6
    hist_size = 1 #original: 4

    def __init__(self, use_gpu, enable_controller, dim):
        self.use_gpu = use_gpu
        self.num_of_actions = len(enable_controller)
        self.enable_controller = enable_controller
        self.dim = dim

        print("Initializing Q-Network...")

        hidden_dim = 256
        self.model = FunctionSet(
            l4=F.Linear(self.dim*self.hist_size, hidden_dim, wscale=np.sqrt(2)),
            q_value=F.Linear(hidden_dim, self.num_of_actions,
                             initialW=np.zeros((self.num_of_actions, hidden_dim),
                                               dtype=np.float32))
        )
        if self.use_gpu >= 0:
            self.model.to_gpu()

        self.model_target = copy.deepcopy(self.model)

        self.optimizer = optimizers.RMSpropGraves(lr=0.00025, alpha=0.95, momentum=0.95, eps=0.0001)
        self.optimizer.setup(self.model.collect_parameters())

        # History Data :  D=[s, a, r, s_dash, end_episode_flag]
        self.d = [np.zeros((self.data_size, self.hist_size, self.dim), dtype=np.uint8),
                  np.zeros(self.data_size, dtype=np.uint8),
                  np.zeros((self.data_size, 1), dtype=np.int8),
                  np.zeros((self.data_size, self.hist_size, self.dim), dtype=np.uint8),
                  np.zeros((self.data_size, 1), dtype=np.bool)]

    def forward(self, state, action, reward, state_dash, episode_end):
        num_of_batch = state.shape[0]
        s = Variable(state)
        s_dash = Variable(state_dash)

        q = self.q_func(s)  # Get Q-value

        # Generate Target Signals
        tmp = self.q_func_target(s_dash)  # Q(s',*)
        if self.use_gpu >= 0:
            tmp = list(map(np.max, tmp.data.get()))  # max_a Q(s',a)
        else:
            tmp = list(map(np.max, tmp.data))  # max_a Q(s',a)

        max_q_dash = np.asanyarray(tmp, dtype=np.float32)
        if self.use_gpu >= 0:
            target = np.asanyarray(q.data.get(), dtype=np.float32)
        else:
            # make new array
            target = np.array(q.data, dtype=np.float32)

        for i in xrange(num_of_batch):
            if not episode_end[i][0]:
                tmp_ = reward[i] + self.gamma * max_q_dash[i]
            else:
                tmp_ = reward[i]

            action_index = self.action_to_index(action[i])
            target[i, action_index] = tmp_

        # TD-error clipping
        if self.use_gpu >= 0:
            target = cuda.to_gpu(target)
        td = Variable(target) - q  # TD error
        td_tmp = td.data + 1000.0 * (abs(td.data) <= 1)  # Avoid zero division
        td_clip = td * (abs(td.data) <= 1) + td/abs(td_tmp) * (abs(td.data) > 1)

        zero_val = np.zeros((self.replay_size, self.num_of_actions), dtype=np.float32)
        if self.use_gpu >= 0:
            zero_val = cuda.to_gpu(zero_val)
        zero_val = Variable(zero_val)
        loss = F.mean_squared_error(td_clip, zero_val)
        return loss, q

    def stock_experience(self, time,
                        state, action, reward, state_dash,
                        episode_end_flag):
        data_index = time % self.data_size

        if episode_end_flag is True:
            self.d[0][data_index] = state
            self.d[1][data_index] = action
            self.d[2][data_index] = reward
        else:
            self.d[0][data_index] = state
            self.d[1][data_index] = action
            self.d[2][data_index] = reward
            self.d[3][data_index] = state_dash
        self.d[4][data_index] = episode_end_flag

    def experience_replay(self, time):
#.........这里部分代码省略.........
开发者ID:masayoshi-nakamura,项目名称:lis,代码行数:103,代码来源:q_net.py

示例4: Replay

# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l4 [as 别名]
class DQN_class:
    # Hyper-Parameters
    gamma = 0.99  # Discount factor
    initial_exploration = 100#10**4  # Initial exploratoin. original: 5x10^4
    replay_size = 32  # Replay (batch) size
    target_model_update_freq = 10**4  # Target update frequancy. original: 10^4
    data_size = 10**5 #10**5  # Data size of history. original: 10^6

    def __init__(self, enable_controller=[0, 3, 4]):
        self.num_of_actions = len(enable_controller)
        self.enable_controller = enable_controller  # Default setting : "Pong"

        print "Initializing DQN..."

        print "Model Building"
        self.CNN_model = FunctionSet(
            l1=F.Convolution2D(4, 32, ksize=8, stride=4, nobias=False, wscale=np.sqrt(2)),
            l2=F.Convolution2D(32, 64, ksize=4, stride=2, nobias=False, wscale=np.sqrt(2)),
            l3=F.Convolution2D(64, 64, ksize=3, stride=1, nobias=False, wscale=np.sqrt(2)),
            )

        self.model = FunctionSet(
            l4=F.Linear(3136, 512, wscale=np.sqrt(2)),
            q_value=F.Linear(512, self.num_of_actions,
                             initialW=np.zeros((self.num_of_actions, 512),
                                               dtype=np.float32))
        ).to_gpu()
        
        d = 'elite/'
        
        self.CNN_model.l1.W.data = np.load(d+'l1_W.npy')#.astype(np.float32)
        self.CNN_model.l1.b.data = np.load(d+'l1_b.npy')#.astype(np.float32)
        self.CNN_model.l2.W.data = np.load(d+'l2_W.npy')#.astype(np.float32)
        self.CNN_model.l2.b.data = np.load(d+'l2_b.npy')#.astype(np.float32)
        self.CNN_model.l3.W.data = np.load(d+'l3_W.npy')#.astype(np.float32)
        self.CNN_model.l3.b.data = np.load(d+'l3_b.npy')#.astype(np.float32)

        self.CNN_model = self.CNN_model.to_gpu()
        self.CNN_model_target = copy.deepcopy(self.CNN_model)
        self.model_target = copy.deepcopy(self.model)


        
        print "Initizlizing Optimizer"
        self.optimizer = optimizers.RMSpropGraves(lr=0.00025, alpha=0.95, momentum=0.95, eps=0.0001)
        self.optimizer.setup(self.model.collect_parameters())

        # History Data :  D=[s, a, r, s_dash, end_episode_flag]
        self.D = [np.zeros((self.data_size, 4, 84, 84), dtype=np.uint8),
                  np.zeros(self.data_size, dtype=np.uint8),
                  np.zeros((self.data_size, 1), dtype=np.int8),
                  np.zeros((self.data_size, 4, 84, 84), dtype=np.uint8),
                  np.zeros((self.data_size, 1), dtype=np.bool),
                  np.zeros((self.data_size, 1), dtype=np.uint8)]
        


    def forward(self, state, action, Reward, state_dash, episode_end):
        num_of_batch = state.shape[0]
        s = Variable(state)
        s_dash = Variable(state_dash)

        Q = self.Q_func(s)  # Get Q-value

        # Generate Target Signals
        tmp = self.Q_func_target(s_dash)  # Q(s',*)
        tmp = list(map(np.max, tmp.data.get()))  # max_a Q(s',a)
        max_Q_dash = np.asanyarray(tmp, dtype=np.float32)
        target = np.asanyarray(Q.data.get(), dtype=np.float32)

        for i in xrange(num_of_batch):
            if not episode_end[i][0]:
                tmp_ = np.sign(Reward[i]) + self.gamma * max_Q_dash[i]
            else:
                tmp_ = np.sign(Reward[i])

            action_index = self.action_to_index(action[i])
            target[i, action_index] = tmp_

        # TD-error clipping
        td = Variable(cuda.to_gpu(target)) - Q  # TD error
        td_tmp = td.data + 1000.0 * (abs(td.data) <= 1)  # Avoid zero division
        td_clip = td * (abs(td.data) <= 1) + td/abs(td_tmp) * (abs(td.data) > 1)

        zero_val = Variable(cuda.to_gpu(np.zeros((self.replay_size, self.num_of_actions), dtype=np.float32)))
        loss = F.mean_squared_error(td_clip, zero_val)
        return loss, Q

    def stockExperience(self, time,
                        state, action, lstm_reward, state_dash,
                        episode_end_flag, ale_reward):
        data_index = time % self.data_size

        if episode_end_flag is True:
            self.D[0][data_index] = state
            self.D[1][data_index] = action
            self.D[2][data_index] = lstm_reward
            self.D[5][data_index] = ale_reward
        else:
            self.D[0][data_index] = state
#.........这里部分代码省略.........
开发者ID:TakuTsuzuki,项目名称:Hackathon2015,代码行数:103,代码来源:imitation_learning_DQN_LSTM.py

示例5: Replay

# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l4 [as 别名]
class DQN_class:
    # Hyper-Parameters
    gamma = 0.99                       # Discount factor
    initial_exploration = 5*10**4      # 10**4  # Initial exploratoin. original: 5x10^4
    replay_size = 32                   # Replay (batch) size
    target_model_update_freq = 10**4   # Target update frequancy. original: 10^4
    data_size = 10**6                  # Data size of history. original: 10^6
    num_of_actions = 2                 # Action dimention
    num_of_states = 12                 # State dimention
    
    def __init__(self):
                  
        print "Initializing DQN..."
#	Initialization of Chainer 1.1.0 or older.
#        print "CUDA init"
#        cuda.init()

        print "Model Building"
#        self.model = FunctionSet(
#            l1=F.Convolution2D(4, 32, ksize=8, stride=4, nobias=False, wscale=np.sqrt(2)),
#            l2=F.Convolution2D(32, 64, ksize=4, stride=2, nobias=False, wscale=np.sqrt(2)),
#            l3=F.Convolution2D(64, 64, ksize=3, stride=1, nobias=False, wscale=np.sqrt(2)),
#            l4=F.Linear(3136, 512, wscale=np.sqrt(2)),
#            q_value=F.Linear(512, self.num_of_actions,
#                             initialW=np.zeros((self.num_of_actions, 512),
#                                               dtype=np.float32))
#        ).to_gpu()
        
#        self.critic = FunctionSet(
#            l1=F.Linear(self.num_of_actions+self.num_of_states,512),
#            l2=F.Linear(512,256),
#            l3=F.Linear(256,128),
#            q_value=F.Linear(128,1,initialW=np.zeros((1,128),dtype=np.float32))
#        ).to_gpu()
#        
#        self.actor = FunctionSet(
#            l1=F.Linear(self.num_of_states,512),
#            l2=F.Linear(512,256),
#            l3=F.Linear(256,128),
#            a_value=F.Linear(128,self.num_of_actions,initialW=np.zeros((1,128),dtype=np.float32))
#        ).to_gpu()
        
        self.critic = FunctionSet(
            l1=F.Linear(self.num_of_actions+self.num_of_states,1024),
            l2=F.Linear(1024,512),
            l3=F.Linear(512,256),
            l4=F.Linear(256,128),
            q_value=F.Linear(128,1,initialW=np.zeros((1,128),dtype=np.float32))
        ).to_gpu()
        
        self.actor = FunctionSet(
            l1=F.Linear(self.num_of_states,1024),
            l2=F.Linear(1024,512),
            l3=F.Linear(512,256),
            l4=F.Linear(256,128),
            a_value=F.Linear(128,self.num_of_actions,initialW=np.zeros((1,128),dtype=np.float32))
        ).to_gpu()
        
#        self.critic = FunctionSet(
#            l1=F.Linear(self.num_of_actions+self.num_of_states,1024,wscale=0.01*math.sqrt(self.num_of_actions+self.num_of_states)),
#            l2=F.Linear(1024,512,wscale=0.01*math.sqrt(1024)),
#            l3=F.Linear(512,256,wscale=0.01*math.sqrt(512)),
#            l4=F.Linear(256,128,wscale=0.01*math.sqrt(256)),
#            q_value=F.Linear(128,1,wscale=0.01*math.sqrt(128))
#        ).to_gpu()
#        
#        self.actor = FunctionSet(
#            l1=F.Linear(self.num_of_states,1024,wscale=0.01*math.sqrt(self.num_of_states)),
#            l2=F.Linear(1024,512,wscale=0.01*math.sqrt(1024)),
#            l3=F.Linear(512,256,wscale=0.01*math.sqrt(512)),
#            l4=F.Linear(256,128,wscale=0.01*math.sqrt(256)),
#            a_value=F.Linear(128,self.num_of_actions,wscale=0.01*math.sqrt(128))
#        ).to_gpu()
        
        self.critic_target = copy.deepcopy(self.critic) 
        self.actor_target = copy.deepcopy(self.actor)
        
        print "Initizlizing Optimizer"
        #self.optim_critic = optimizers.RMSpropGraves(lr=0.0001, alpha=0.95, momentum=0.95, eps=0.0001)
        #self.optim_actor = optimizers.RMSpropGraves(lr=0.0001, alpha=0.95, momentum=0.95, eps=0.0001)
        self.optim_critic = optimizers.Adam(alpha=0.00001)
        self.optim_actor = optimizers.Adam(alpha=0.00001)
        self.optim_critic.setup(self.critic)
        self.optim_actor.setup(self.actor)
        
#        self.optim_critic.add_hook(chainer.optimizer.WeightDecay(0.00001))
#        self.optim_critic.add_hook(chainer.optimizer.GradientClipping(10))
#        self.optim_actor.add_hook(chainer.optimizer.WeightDecay(0.00001))
#        self.optim_actor.add_hook(chainer.optimizer.GradientClipping(10))

        # History Data :  D=[s, a, r, s_dash, end_episode_flag]
        self.D = [np.zeros((self.data_size, self.num_of_states), dtype=np.float32),
                  np.zeros((self.data_size, self.num_of_actions), dtype=np.float32),
                  np.zeros((self.data_size, 1), dtype=np.float32),
                  np.zeros((self.data_size, self.num_of_states), dtype=np.float32),
                  np.zeros((self.data_size, 1), dtype=np.bool)]
                  
#        with open('dqn_dump.json', 'a') as f:
#            json.dump(datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S'), f)
#            f.write('\n')
#.........这里部分代码省略.........
开发者ID:hughhugh,项目名称:dqn-vrep,代码行数:103,代码来源:agent_dqn_ddac.py

示例6: SDA

# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l4 [as 别名]
class SDA(object):
	def __init__(
		self,
		rng,
		data,
		target,
		n_inputs=784,
		n_hidden=[784,784,784],
		n_outputs=10,
		corruption_levels=[0.1,0.2,0.3],
		gpu=-1):

		self.model = FunctionSet(
			l1=F.Linear(n_inputs, n_hidden[0]),
			l2=F.Linear(n_hidden[0], n_hidden[1]),
			l3=F.Linear(n_hidden[1], n_hidden[2]),
			l4=F.Linear(n_hidden[2], n_outputs)
		)

		if gpu >= 0:
			self.model.to_gpu()

		self.rng = rng
		self.gpu = gpu
		self.data = data
		self.target = target

		self.x_train, self.x_test = data
		self.y_train, self.y_test = target

		self.n_train = len(self.y_train)
		self.n_test = len(self.y_test)

		self.corruption_levels = corruption_levels
		self.n_inputs = n_inputs
		self.n_hidden = n_hidden
		self.n_outputs = n_outputs

		self.dae1 = None
		self.dae2 = None
		self.dae3 = None
		self.optimizer = None
		self.setup_optimizer()

		self.train_accuracies = []
		self.train_losses = []

		self.test_accuracies = []
		self.test_losses = []

	def setup_optimizer(self):
		self.optimizer = optimizers.AdaDelta()
		self.optimizer.setup(self.model)

	@property
	def xp(self):
		return cuda.cupy if self.gpu >= 0 else numpy

	def pre_train(self, n_epoch=20, batchsize=100):
		first_inputs = self.data

		# initialize first dAE
		self.dae1 = DA(self.rng,
					   data=first_inputs,
					   n_inputs=self.n_inputs,
					   n_hidden=self.n_hidden[0],
					   corruption_level=self.corruption_levels[0],
					   gpu=self.gpu)
		# train first dAE
		logging.info("--------First DA training has started!--------")
		self.dae1.train_and_test(n_epoch=n_epoch, batchsize=batchsize)
		self.dae1.to_cpu()
		# compute second iputs for second dAE
		tmp1 = self.dae1.compute_hidden(first_inputs[0])
		tmp2 = self.dae1.compute_hidden(first_inputs[1])
		if self.gpu >= 0:
			self.dae1.to_gpu()
		second_inputs = [tmp1, tmp2]

		# initialize second dAE
		self.dae2 = DA(
			self.rng,
			data=second_inputs,
			n_inputs=self.n_hidden[0],
			n_hidden=self.n_hidden[1],
			corruption_level=self.corruption_levels[1],
			gpu=self.gpu
		)
		# train second dAE
		logging.info("--------Second DA training has started!--------")
		self.dae2.train_and_test(n_epoch=n_epoch, batchsize=batchsize)
		self.dae2.to_cpu()
		# compute third inputs for third dAE
		tmp1 = self.dae2.compute_hidden(second_inputs[0])
		tmp2 = self.dae2.compute_hidden(second_inputs[1])
		if self.gpu >= 0:
			self.dae2.to_gpu()
		third_inputs = [tmp1, tmp2]

		# initialize third dAE
#.........这里部分代码省略.........
开发者ID:medinfo2,项目名称:deeplearning,代码行数:103,代码来源:sda.py

示例7: ChainerAgent

# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l4 [as 别名]
class ChainerAgent(Agent):
	def __init__(self, epsilon=1.0, frames_per_action=4):
		super(ChainerAgent, self).__init__()
		cuda.init()
		self.epsilon = epsilon
		self.gamma = 0.99
		self.iterations = 0
		
		self.model = FunctionSet(
			l1 = F.Linear(9 * frames_per_action, 256),
			l2 = F.Linear(256, 256),
			l3 = F.Linear(256, 256),
			l4 = F.Linear(256, 2),
		).to_gpu()

		self.optimizer = optimizers.RMSprop(lr=1e-5)
		self.optimizer.setup(self.model)
		self.update_target()

		self.num_frames = 0
		self.frames_per_action = frames_per_action
		self.prev_reward = 0.0

		self.history = ChainHistory(state_len=(9 * frames_per_action))

	def forward(self, state, action, reward, new_state, is_terminal):
		q = self.get_q(Variable(state))
		q_target = self.get_target_q(Variable(new_state))

		max_target_q = cp.max(q_target.data, axis=1)

		target = cp.copy(q.data)

		for i in xrange(target.shape[0]):
			curr_action = int(action[i])
			if is_terminal[i]:
				target[i, curr_action] = reward[i]
			else:
				target[i, curr_action] = reward[i] + self.gamma * max_target_q[i]
		
		loss = F.mean_squared_error(Variable(target), q)
		return loss, 0.0 #cp.mean(q.data[:, action[i]])

	def get_q(self, state):
		h1 = F.relu(self.model.l1(state))
		h2 = F.relu(self.model.l2(h1))
		h3 = F.relu(self.model.l3(h2))
		return self.model.l4(h3)

	def get_target_q(self, state):
		h1 = F.relu(self.target_model.l1(state))
		h2 = F.relu(self.target_model.l2(h1))
		h3 = F.relu(self.target_model.l3(h2))
		return self.target_model.l4(h3)

	def accept_reward(self, state, action, reward, new_state, is_terminal):
		self.prev_reward += reward

		if not (is_terminal or self.num_frames % self.frames_per_action == 0):
			return

		if self.num_frames == self.frames_per_action:
			self.prev_reward = 0.0
			self.prev_action = action
			return

		self.history.add((self.prev_state, self.prev_action, self.prev_reward,
			self.curr_state, is_terminal))
		self.prev_reward = 0.0
		self.prev_action = action

		self.iterations += 1
		if self.iterations % 10000 == 0:
			print '*** UPDATING TARGET NETWORK ***'
			self.update_target()
		
		state, action, reward, new_state, is_terminal = self.history.get(num=32)

		state = cuda.to_gpu(state)
		action = cuda.to_gpu(action)
		new_state = cuda.to_gpu(new_state)
		reward = cuda.to_gpu(reward)

		loss, q = self.forward(state, action, reward, new_state, is_terminal)
		self.optimizer.zero_grads()
		loss.backward()
		self.optimizer.update()

	def update_state_vector(self, state):
		if self.num_frames < self.frames_per_action:
			if self.num_frames == 0:
				self.curr_state = state
			else:
				self.curr_state = np.hstack((self.curr_state, state))
		else:
			if self.num_frames < 2 * self.frames_per_action:
				if self.num_frames == self.frames_per_action:
					self.prev_state = np.copy(self.curr_state[:, :9])
				else:
					self.prev_state = np.hstack((self.prev_state, self.curr_state[:, :9]))
#.........这里部分代码省略.........
开发者ID:dylanrhodes,项目名称:helicopter-ai,代码行数:103,代码来源:agents.py

示例8: ConvQAgent

# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l4 [as 别名]
class ConvQAgent(Agent):
	def __init__(self, frames_per_action=4):
		super(ConvQAgent, self).__init__()
		cuda.init()
		self.epsilon = 1.0
		self.gamma = 0.99
		self.iterations = 0
		
		self.model = FunctionSet(
			l1 = F.Convolution2D(frames_per_action, 32, ksize=8, stride=4, nobias=False, wscale=np.sqrt(2)),
			l2 = F.Convolution2D(32, 64, ksize=4, stride=2, nobias=False, wscale=np.sqrt(2)),
			l3 = F.Convolution2D(64, 64, ksize=3, stride=1, nobias=False, wscale=np.sqrt(2)),
			l4 = F.Linear(64 * 7 * 7, 512),
			l5 = F.Linear(512, 2)
		).to_gpu()

		self.optimizer = optimizers.RMSprop(lr=1e-5)
		self.optimizer.setup(self.model)
		self.update_target()

		self.num_frames = 0
		self.frames_per_action = frames_per_action
		self.prev_reward = 0.0

		self.history = ConvHistory((frames_per_action, 84, 84))

	def update_target(self):
		self.target_model = copy.deepcopy(self.model)
		self.target_model = self.target_model.to_gpu()

	def act(self, state):
		self.update_state_vector(state)

		if self.num_frames < self.frames_per_action - 1 or self.num_frames % self.frames_per_action != 0:
			return None

		if random.random() < 0.001:
			print 'Epsilon: {}'.format(self.epsilon)

		if self.epsilon > 0.05:
			self.epsilon -= (0.95 / 300000)

		if random.random() < self.epsilon:
			return random.random() > 0.375

		q = self.get_q(Variable(cuda.to_gpu(self.curr_state[np.newaxis, :, :, :])))

		if random.random() < 0.01:
			if q.data[0,1] > q.data[0,0]:
				print 'On: {}'.format(q.data)
			else:
				print 'Off: {}'.format(q.data)

		return q.data[0,1] > q.data[0,0]

	def update_state_vector(self, state):
		if self.num_frames < self.frames_per_action:
			if self.num_frames == 0:
				self.curr_state = np.zeros((self.frames_per_action, 84, 84), dtype=np.float32)
			self.curr_state[self.num_frames, :, :] = state
		else:
			if self.num_frames == self.frames_per_action:
				self.prev_state = np.zeros((self.frames_per_action, 84, 84), dtype=np.float32)
			self.prev_state[1:, :, :] = self.prev_state[:-1, :, :]
			self.prev_state[0, :, :] = self.curr_state[-1, :, :]

			self.curr_state[1:, :, :] = self.curr_state[:-1, :, :]
			self.curr_state[0, :, :] = state

		self.num_frames += 1

	def accept_reward(self, state, action, reward, new_state, is_terminal):
		self.prev_reward += reward

		if not (is_terminal or self.num_frames % self.frames_per_action == 0):
			return

		if self.num_frames == self.frames_per_action:
			self.prev_reward = 0.0
			self.prev_action = action
			return

		self.history.add((self.prev_state, self.prev_action, self.prev_reward,
			self.curr_state, is_terminal))
		self.prev_reward = 0.0
		self.prev_action = action

		self.iterations += 1
		if self.iterations % 10000 == 0:
			print '*** UPDATING TARGET NETWORK ***'
			self.update_target()
		
		state, action, reward, new_state, is_terminal = self.history.get(num=32)

		state = cuda.to_gpu(state)
		action = cuda.to_gpu(action)
		new_state = cuda.to_gpu(new_state)
		reward = cuda.to_gpu(reward)

		loss, q = self.forward(state, action, reward, new_state, is_terminal)
#.........这里部分代码省略.........
开发者ID:dylanrhodes,项目名称:helicopter-ai,代码行数:103,代码来源:agents.py


注:本文中的chainer.FunctionSet.l4方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。