当前位置: 首页>>代码示例>>Python>>正文


Python FunctionSet.conv3方法代码示例

本文整理汇总了Python中chainer.FunctionSet.conv3方法的典型用法代码示例。如果您正苦于以下问题:Python FunctionSet.conv3方法的具体用法?Python FunctionSet.conv3怎么用?Python FunctionSet.conv3使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在chainer.FunctionSet的用法示例。


在下文中一共展示了FunctionSet.conv3方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Inception

# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import conv3 [as 别名]
class Inception(Function):
    """Inception module of GoogLeNet.

    It applies four different functions to the input array and concatenates
    their outputs along the channel dimension. Three of them are 2D convolutions
    of sizes 1x1, 3x3 and 5x5. Convolution paths of 3x3 and 5x5 sizes have 1x1
    convolutions (called projections) ahead of them. The other path consists of
    1x1 convolution (projection) and 3x3 max pooling.

    The output array has the same spatial size as the input. In order to satisfy
    this, Inception module uses appropriate padding for each convolution and
    pooling.

    See: `Going Deeper with Convolutions <http://arxiv.org/abs/1409.4842>`_.

    Args:
        in_channels (int): Number of channels of input arrays.
        out1 (int): Output size of 1x1 convolution path.
        proj3 (int): Projection size of 3x3 convolution path.
        out3 (int): Output size of 3x3 convolution path.
        proj5 (int): Projection size of 5x5 convolution path.
        out5 (int): Output size of 5x5 convolution path.
        proj_pool (int): Projection size of max pooling path.

    Returns:
        Variable: Output variable. Its array has the same spatial size and the
            same minibatch size as the input array. The channel dimension has
            size ``out1 + out3 + out5 + proj_pool``.

    .. note::

       This function inserts the full computation graph of the Inception module behind
       the input array. This function itself is not inserted into the
       computation graph.

    """
    def __init__(self, in_channels, out1, proj3, out3, proj5, out5, proj_pool):
        self.f = FunctionSet(
            conv1 = Convolution2D(in_channels, out1,      1),
            proj3 = Convolution2D(in_channels, proj3,     1),
            conv3 = Convolution2D(proj3,       out3,      3, pad=1),
            proj5 = Convolution2D(in_channels, proj5,     1),
            conv5 = Convolution2D(proj5,       out5,      5, pad=2),
            projp = Convolution2D(in_channels, proj_pool, 1),
        )

    def forward(self, x):
        self.x = Variable(x[0])
        out1 = self.f.conv1(self.x)
        out3 = self.f.conv3(relu(self.f.proj3(self.x)))
        out5 = self.f.conv5(relu(self.f.proj5(self.x)))
        pool = self.f.projp(max_pooling_2d(self.x, 3, stride=1, pad=1))
        self.y = relu(concat((out1, out3, out5, pool), axis=1))

        return self.y.data,

    def backward(self, x, gy):
        self.y.grad = gy[0]
        self.y.backward()
        return self.x.grad,

    def to_gpu(self, device=None):
        return self.f.to_gpu(device)

    def to_cpu(self):
        return self.f.to_cpu()

    @property
    def parameters(self):
        return self.f.parameters

    @parameters.setter
    def parameters(self, params):
        self.f.parameters = params

    @property
    def gradients(self):
        return self.f.gradients

    @gradients.setter
    def gradients(self, grads):
        self.f.gradients = grads
开发者ID:ALEXGUOQ,项目名称:chainer,代码行数:84,代码来源:inception.py

示例2: __init__

# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import conv3 [as 别名]
class CNN:
    file_names = None

    def __init__(self):
        self.optimizer = optimizers.Adam()
        self.model_name = "cnn_nantyara"
        if os.path.exists(self.model_name):
            self.load_model()
        else:
            self.crete_model()
        self.optimizer.setup(self.model.collect_parameters())

    def crete_model(self):
        self.model = FunctionSet(
            conv1=F.Convolution2D(3, 32, 3),
            bn1=F.BatchNormalization(32),
            conv2=F.Convolution2D(32, 64, 3, pad=1),
            bn2=F.BatchNormalization(64),
            conv3=F.Convolution2D(64, 64, 3, pad=1),
            fl4=F.Linear(1024, 256),
            fl5=F.Linear(256, 2),
        )

    def get_data(self, ifpath, image_categories, reshape_size=(3, 32, 32)):
        x = []
        x_apd = x.append
        y = []
        y_apd = y.append

        for i_category, category in enumerate(image_categories):
            for i_num in xrange(1, self.get_num_of_images(ifpath, category)):
                image = np.array(Image.open(ifpath + "/" + category + str(i_num) + ".jpeg"), dtype=np.float32).reshape(
                    reshape_size
                )
                x_apd(image)
                y_apd(i_category)

        self.N = len(x)
        return x, np.array(y, dtype=np.int32)

    def get_data_for_predict(self, ifpath, image_name, reshape_size=(3, 32, 32)):
        image = np.array(Image.open(ifpath + "/" + image_name), dtype=np.float32)
        image = cv2.resize(image, (reshape_size[1], reshape_size[2]))
        # print image.shape
        image = image.reshape(reshape_size)
        return [image]

    def forward(self, x_data, y_data, train=True):
        x, t = Variable(np.array(x_data)), Variable(y_data)
        h1 = F.max_pooling_2d(F.relu(self.model.bn1(self.model.conv1(x))), 2)
        h2 = F.max_pooling_2d(F.relu(self.model.bn2(self.model.conv2(h1))), 2)
        h3 = F.max_pooling_2d(F.relu(self.model.conv3(h2)), 2)
        h4 = F.dropout(F.relu(self.model.fl4(h3)), train=train)
        y = self.model.fl5(h4)

        if train:
            return F.softmax_cross_entropy(y, t), F.accuracy(y, t)
        else:
            res = [d for data in F.softmax(y).data for d in data]
            # print res
            return np.array(res).argmax() if len([r for r in res if r > 0.5]) > 0 else "unknown"

    def get_num_of_images(self, path, image_name):
        cmd = "ls images|grep %s|wc -l" % (image_name)
        return int(subprocess.check_output(cmd, shell=True))

    def dump_model(self):
        self.model.to_cpu()
        with open(self.model_name, "wb") as f:
            pickle.dump(self.model, f, -1)

    def load_model(self):
        with open(self.model_name, "rb") as f:
            self.model = pickle.load(f)

    def fit(self, x_train, y_train, epoch=20, batchsize=100):
        for epoch in xrange(1, epoch + 1):
            print "epoch", epoch
            # training
            sum_accuracy = 0
            sum_loss = 0
            for i in xrange(0, self.N, batchsize):
                self.optimizer.zero_grads()
                loss, acc = self.forward(x_train[i : i + batchsize], y_train[i : i + batchsize])
                loss.backward()
                self.optimizer.update()
            print "train mean loss=%s, accuracy =%s" % (str(loss.data), str(acc.data))
        self.dump_model()

    def predict(self, x):
        y = self.forward(x, np.zeros(1, dtype=np.int32), train=False)
        sys.stdout.write(str(self.file_names[y]) if y != "unknonw" else "unknonw")
开发者ID:utam0k,项目名称:deeplearning,代码行数:94,代码来源:cifar-10.py


注:本文中的chainer.FunctionSet.conv3方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。