本文整理汇总了Python中chainer.FunctionSet.l1方法的典型用法代码示例。如果您正苦于以下问题:Python FunctionSet.l1方法的具体用法?Python FunctionSet.l1怎么用?Python FunctionSet.l1使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类chainer.FunctionSet
的用法示例。
在下文中一共展示了FunctionSet.l1方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: CNN3_Model
# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l1 [as 别名]
class CNN3_Model(ModelBase):
u"""see: http://aidiary.hatenablog.com/entry/20151007/1444223445"""
def __init__(self, input_size=32):
super(CNN3_Model, self).__init__()
# F.Convolution2D(in_channel, out_channel, filter_size)
self.model = FunctionSet( # 1*32*32 -(conv)-> 20*28*28 -(pool)-> 20*14*14
conv1=F.Convolution2D(1, 20, 5),
# 20*14*14 -(conv)-> 50*10*10 -(pool)-> 50*5*5=1250
conv2=F.Convolution2D(20, 50, 5),
l1=F.Linear(1250, 300),
l2=F.Linear(300, 2))
def forward(self, x_data, y_data, train=True):
u"""return loss, accuracy"""
x, t = Variable(x_data), Variable(y_data)
h1 = F.max_pooling_2d(F.relu(self.model.conv1(x)), 2)
h2 = F.max_pooling_2d(F.relu(self.model.conv2(h1)), 2)
h3 = F.dropout(F.relu(self.model.l1(h2)), train=train)
y = self.model.l2(h3)
# 多クラス分類なので誤差関数としてソフトマックス関数の
# 交差エントロピー関数を用いて、誤差を導出。最低でもlossは必要
return {
"loss": F.softmax_cross_entropy(y, t),
"accuracy": F.accuracy(y, t)
}
示例2: __init__
# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l1 [as 别名]
class Model1:
def __init__(self, model):
if isinstance(model, tuple):
input_dims, n_units, output_dims = model
self.model = FunctionSet(l1=F.Linear(input_dims, n_units),
l2=F.Linear(n_units, n_units),
l3=F.Linear(n_units, output_dims))
else:
self.model = model
def __call__(self):
return self.model
# Neural net architecture
# ニューラルネットの構造
def forward(self, x_data, y_data, train=True):
x = Variable(x_data)
if not y_data is None: t = Variable(y_data)
h1 = F.dropout(F.relu(self.model.l1(x)), train=train)
h2 = F.dropout(F.relu(self.model.l2(h1)), train=train)
y = self.model.l3(h2)
if not y_data is None:
# 多クラス分類なので誤差関数としてソフトマックス関数の
# 交差エントロピー関数を用いて、誤差を導出
return F.softmax_cross_entropy(y, t), F.accuracy(y, t), y
else:
return y
def evaluate(self, x_data):
return self.forward(x_data, None, train=False)
示例3: __init__
# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l1 [as 别名]
class DeepLearning:
def __init__(self, input_size, hidden_size, output_size):
self.model = FunctionSet(l1=F.Linear(input_size, hidden_size),
l2=F.Linear(hidden_size, hidden_size),
l3=F.Linear(hidden_size, output_size))
self.optimizer = optimizers.Adam()
self.optimizer.setup(self.model.collect_parameters())
def batch(self, X_train, y_train, batch_size, perm):
train_size = X_train.shape[0]
for i in xrange(0, train_size, batch_size):
X_batch = X_train[perm[i: i+batch_size]]
y_batch = y_train[perm[i: i+batch_size]]
# Chainer用に型変換
x = Variable(X_batch)
t = Variable(y_batch)
self.optimizer.zero_grads()
y = self.forward(x) # 予測結果
loss = F.softmax_cross_entropy(y, t)
loss.backward()
self.optimizer.update()
def forward(self, x, train=True):
h1 = F.dropout(F.sigmoid(self.model.l1(x)), train=train)
h2 = F.dropout(F.sigmoid(self.model.l2(h1)), train=train)
return self.model.l3(h2)
def predicate(self, x_data):
x = np.array([x_data], dtype=np.float32)
x = Variable(x)
y = self.forward(x, train=False)
return np.argmax(y.data)
def save(self, fpath):
pickle.dump(self.model, open(fpath, 'wb'), -1)
def load(self, fpath):
self.model = pickle.load(open(fpath,'rb'))
示例4: LogisticRegressionEstimator
# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l1 [as 别名]
class LogisticRegressionEstimator(ChainerClassifier):
def __init__(self, net_hidden=100, net_out=5, **params):
ChainerClassifier.__init__(self, **params)
self.net_hidden = net_hidden
self.net_out = net_out
self.param_names.append('net_hidden')
self.param_names.append('net_out')
def setup_network(self, n_features):
self.network = FunctionSet(
l1 = F.Linear(n_features, self.net_hidden),
l2 = F.Linear(self.net_hidden, self.net_out)
)
def forward_inner(self, x, train=True):
h = F.relu(self.network.l1(x))
y = self.network.l2(h)
return y
示例5: NN3_Model
# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l1 [as 别名]
class NN3_Model(ModelBase):
def __init__(self, input_dim=748, n_units=1000):
super(NN3_Model, self).__init__()
self.n_units = n_units
self.model = FunctionSet(l1=F.Linear(input_dim, n_units),
l2=F.Linear(n_units, n_units),
l3=F.Linear(n_units, 2))
def forward(self, x_data, y_data, train=True):
u"""return loss, accuracy"""
x, t = Variable(x_data), Variable(y_data)
h1 = F.dropout(F.relu(self.model.l1(x)), train=train)
h2 = F.dropout(F.relu(self.model.l2(h1)), train=train)
y = self.model.l3(h2)
# 多クラス分類なので誤差関数としてソフトマックス関数の
# 交差エントロピー関数を用いて、誤差を導出。最低でもlossは必要
return {
"loss": F.softmax_cross_entropy(y, t),
"accuracy": F.accuracy(y, t)
}
示例6: __init__
# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l1 [as 别名]
class CNN_class:
def __init__(self):
self.model = FunctionSet(
l1 = F.Convolution2D(4, 32, ksize=8, stride=4, nobias=False, wscale=np.sqrt(2)),
l2 = F.Convolution2D(32, 64, ksize=4, stride=2, nobias=False, wscale=np.sqrt(2)),
l3 = F.Convolution2D(64, 64, ksize=3, stride=1, nobias=False, wscale=np.sqrt(2))
)
self.model.l1.W = np.load('elite/l1_W.npy')
self.model.l1.b = np.load('elite/l1_b.npy')
self.model.l2.W = np.load('elite/l2_W.npy')
self.model.l2.b = np.load('elite/l2_b.npy')
self.model.l3.W = np.load('elite/l3_W.npy')
self.model.l3.b = np.load('elite/l3_b.npy')
def CNN_forward(self, state):
h1 = F.relu(self.model.l1(state / 254.0))
h2 = F.relu(self.model.l2(h1))
h3 = F.relu(self.model.l3(h2))
return h3
示例7: MLP
# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l1 [as 别名]
class MLP(object):
def __init__(
self,
data,
target,
n_inputs=784,
n_hidden=784,
n_outputs=10,
gpu=-1
):
self.model = FunctionSet(
l1=F.Linear(n_inputs, n_hidden),
l2=F.Linear(n_hidden, n_hidden),
l3=F.Linear(n_hidden, n_outputs)
)
if gpu >= 0:
self.model.to_gpu()
self.x_train, self.x_test = data
self.y_train, self.y_test = target
self.n_train = len(self.y_train)
self.n_test = len(self.y_test)
self.gpu = gpu
self.optimizer = optimizers.Adam()
self.optimizer.setup(self.model)
self.train_accuracies = []
self.train_losses = []
self.test_accuracies = []
self.test_losses = []
@property
def xp(self):
return cuda.cupy if self.gpu >= 0 else numpy
def forward(self, x_data, y_data, train=True):
x, t = Variable(x_data), Variable(y_data)
h1 = F.dropout(F.relu(self.model.l1(x)), train=train)
h2 = F.dropout(F.relu(self.model.l2(h1)), train=train)
y = self.model.l3(h2)
return F.softmax_cross_entropy(y, t), F.accuracy(y, t)
def train_and_test(self, n_epoch=20, batchsize=100):
for epoch in xrange(1, n_epoch + 1):
logging.info('epoch {}'.format(epoch))
perm = numpy.random.permutation(self.n_train)
sum_accuracy = 0
sum_loss = 0
for i in xrange(0, self.n_train, batchsize):
x_batch = self.xp.asarray(self.x_train[perm[i:i+batchsize]])
y_batch = self.xp.asarray(self.y_train[perm[i:i+batchsize]])
real_batchsize = len(x_batch)
self.optimizer.zero_grads()
loss, acc = self.forward(x_batch, y_batch)
loss.backward()
self.optimizer.update()
sum_loss += float(cuda.to_cpu(loss.data)) * real_batchsize
sum_accuracy += float(cuda.to_cpu(acc.data)) * real_batchsize
self.train_accuracies.append(sum_accuracy / self.n_train)
self.train_losses.append(sum_loss / self.n_train)
logging.info(
'train mean loss={}, accuracy={}'.format(
sum_loss / self.n_train,
sum_accuracy / self.n_train
)
)
# evalation
sum_accuracy = 0
sum_loss = 0
for i in xrange(0, self.n_test, batchsize):
x_batch = self.xp.asarray(self.x_test[i:i+batchsize])
y_batch = self.xp.asarray(self.y_test[i:i+batchsize])
real_batchsize = len(x_batch)
loss, acc = self.forward(x_batch, y_batch, train=False)
sum_loss += float(cuda.to_cpu(loss.data)) * real_batchsize
sum_accuracy += float(cuda.to_cpu(acc.data)) * real_batchsize
self.test_accuracies.append(sum_accuracy / self.n_test)
self.test_accuracies.append(sum_loss / self.n_test)
logging.info(
'test mean loss={}, accuracy={}'.format(
sum_loss / self.n_test,
sum_accuracy / self.n_test
)
)
示例8: open
# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l1 [as 别名]
# output loss
f = open(loss_output, 'w')
for i in range(1, n_epoch + 1):
strs = '{0:05.0f} {1:.2f} {2:.2f}\n'.format(i, loss_train[i - 1], loss_test[i - 1])
f.writelines(strs)
f.close()
# test
print('-----')
print('starting to make test data with model')
x = Variable(cuda.to_gpu(x_test[1000:1000 + 200].reshape((200, default_bitrate))))
h1 = F.dropout(F.relu(model.l1(x)), train=False)
y = F.dropout(model.l2(h1), train=False)
#print(x.data)
#print(y.data)
x_range = np.arange(0, default_bitrate * 200, 1)
print('test mean loss={}'.format(F.mean_squared_error(y, x).data))
#print(x.data.ndim, x_range.ndim)
#plt.plot(x_range, y.data[0])
#plt.plot(x_range, t.data[0])
#plt.show()
x_datas = []
t_datas = []
y_datas = []
x_datas.extend(x_range)
示例9: Replay
# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l1 [as 别名]
class DQN_class:
# Hyper-Parameters
gamma = 0.99 # Discount factor
initial_exploration = 10**4 # Initial exploratoin. original: 5x10^4
replay_size = 32 # Replay (batch) size
target_model_update_freq = 10**4 # Target update frequancy. original: 10^4
data_size = 10**5 # Data size of history. original: 10^6
def __init__(self, enable_controller=[0, 3, 4]):
self.num_of_actions = len(enable_controller)
self.enable_controller = enable_controller # Default setting : "Pong"
print "Initializing DQN..."
# Initialization for Chainer 1.1.0 or older.
# print "CUDA init"
# cuda.init()
print "Model Building"
self.model = FunctionSet(
l1=F.Convolution2D(4, 16, ksize=8, stride=4, wscale=np.sqrt(2)),
l2=F.Convolution2D(16, 32, ksize=4, stride=2, wscale=np.sqrt(2)),
l3=F.Linear(2592, 256),
q_value=F.Linear(256, self.num_of_actions,
initialW=np.zeros((self.num_of_actions, 256),
dtype=np.float32))
).to_gpu()
print "Initizlizing Optimizer"
self.optimizer = optimizers.RMSpropGraves(lr=0.0002, alpha=0.3, momentum=0.2)
self.optimizer.setup(self.model.collect_parameters())
# History Data : D=[s, a, r, s_dash, end_episode_flag]
self.D = [np.zeros((self.data_size, 4, 84, 84), dtype=np.uint8),
np.zeros(self.data_size, dtype=np.uint8),
np.zeros((self.data_size, 1), dtype=np.int8),
np.zeros((self.data_size, 4, 84, 84), dtype=np.uint8),
np.zeros((self.data_size, 1), dtype=np.bool)]
def forward(self, state, action, Reward, state_dash, episode_end):
num_of_batch = state.shape[0]
s = Variable(state)
s_dash = Variable(state_dash)
Q = self.Q_func(s) # Get Q-value
# Generate Target Signals
max_Q_dash_ = self.Q_func(s_dash)
tmp = list(map(np.max, max_Q_dash_.data.get()))
max_Q_dash = np.asanyarray(tmp, dtype=np.float32)
target = np.asanyarray(Q.data.get(), dtype=np.float32)
for i in xrange(num_of_batch):
if not episode_end[i][0]:
tmp_ = np.sign(Reward[i]) + self.gamma * max_Q_dash[i]
else:
tmp_ = np.sign(Reward[i])
target[i, self.action_to_index(action[i])] = tmp_
loss = F.mean_squared_error(Variable(cuda.to_gpu(target)), Q)
return loss, Q
def stockExperience(self, time,
state, action, reward, state_dash,
episode_end_flag):
data_index = time % self.data_size
if episode_end_flag is True:
self.D[0][data_index] = state
self.D[1][data_index] = action
self.D[2][data_index] = reward
else:
self.D[0][data_index] = state
self.D[1][data_index] = action
self.D[2][data_index] = reward
self.D[3][data_index] = state_dash
self.D[4][data_index] = episode_end_flag
def experienceReplay(self, time):
if self.initial_exploration < time:
# Pick up replay_size number of samples from the Data
if time < self.data_size: # during the first sweep of the History Data
replay_index = np.random.randint(0, time, (self.replay_size, 1))
else:
replay_index = np.random.randint(0, self.data_size, (self.replay_size, 1))
s_replay = np.ndarray(shape=(self.replay_size, 4, 84, 84), dtype=np.float32)
a_replay = np.ndarray(shape=(self.replay_size, 1), dtype=np.uint8)
r_replay = np.ndarray(shape=(self.replay_size, 1), dtype=np.float32)
s_dash_replay = np.ndarray(shape=(self.replay_size, 4, 84, 84), dtype=np.float32)
episode_end_replay = np.ndarray(shape=(self.replay_size, 1), dtype=np.bool)
for i in xrange(self.replay_size):
s_replay[i] = np.asarray(self.D[0][replay_index[i]], dtype=np.float32)
a_replay[i] = self.D[1][replay_index[i]]
r_replay[i] = self.D[2][replay_index[i]]
s_dash_replay[i] = np.array(self.D[3][replay_index[i]], dtype=np.float32)
episode_end_replay[i] = self.D[4][replay_index[i]]
s_replay = cuda.to_gpu(s_replay)
s_dash_replay = cuda.to_gpu(s_dash_replay)
#.........这里部分代码省略.........
示例10: Replay
# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l1 [as 别名]
class DQN_class:
# Hyper-Parameters
gamma = 0.99 # Discount factor
initial_exploration = 50000 # 10**4 # Initial exploratoin. original: 5x10^4
replay_size = 32 # Replay (batch) size
target_model_update_freq = 10 ** 4 # Target update frequancy. original: 10^4
data_size = 5 * (10 ** 5) # Data size of history. original: 10^6
field_num = 7
field_size = 17
def __init__(self, control_size=10, field_num=7, field_size=17):
self.num_of_actions = control_size
self.field_size = field_size
# self.enable_controller = enable_controller # Default setting : "Pong"
print "Initializing DQN..."
# Initialization of Chainer 1.1.0 or older.
# print "CUDA init"
# cuda.init()
self.field_num = field_num
print "Model Building"
self.model = FunctionSet(
l1=F.Convolution2D(self.field_num * 4, 16, ksize=5, stride=1, nobias=False, wscale=np.sqrt(2)),
l2=F.Convolution2D(16, 24, ksize=4, stride=1, nobias=False, wscale=np.sqrt(2)),
l3=F.Linear(2400, 512, wscale=np.sqrt(2)),
q_value=F.Linear(512, self.num_of_actions,
initialW=np.zeros((self.num_of_actions, 512),
dtype=np.float32))
).to_gpu()
self.model_target = copy.deepcopy(self.model)
print "Initizlizing Optimizer"
self.optimizer = optimizers.RMSpropGraves(lr=0.00025, alpha=0.95, momentum=0.95, eps=0.0001)
# self.optimizer.setup(self.model.collect_parameters())
self.optimizer.setup(self.model)
# History Data : D=[s, a, r, s_dash, end_episode_flag]
self.D = [np.zeros((self.data_size, self.field_num * 4, self.field_size, self.field_size), dtype=np.uint8),
np.zeros(self.data_size, dtype=np.uint8),
np.zeros((self.data_size, 1), dtype=np.float32),
np.zeros((self.data_size, self.field_num * 4, self.field_size, self.field_size), dtype=np.uint8),
np.zeros((self.data_size, 1), dtype=np.bool)]
def forward(self, state, action, Reward, state_dash, episode_end):
num_of_batch = state.shape[0]
s = Variable(state)
s_dash = Variable(state_dash)
Q = self.Q_func(s) # Get Q-value
# Generate Target Signals
tmp = self.Q_func_target(s_dash) # Q(s',*)
tmp = list(map(np.max, tmp.data.get())) # max_a Q(s',a)
max_Q_dash = np.asanyarray(tmp, dtype=np.float32)
target = np.asanyarray(Q.data.get(), dtype=np.float32)
for i in xrange(num_of_batch):
if not episode_end[i][0]:
tmp_ = np.sign(Reward[i]) + self.gamma * max_Q_dash[i]
else:
tmp_ = np.sign(Reward[i])
# action_index = self.action_to_index(action[i])
target[i, action[i]] = tmp_
# TD-error clipping
td = Variable(cuda.to_gpu(target)) - Q # TD error
# td = Variable(target) - Q # TD error
td_tmp = td.data + 1000.0 * (abs(td.data) <= 1) # Avoid zero division
td_clip = td * (abs(td.data) <= 1) + td / abs(td_tmp) * (abs(td.data) > 1)
#print "td_data " + str(td_clip.data)
zero_val = Variable(cuda.to_gpu(np.zeros((self.replay_size, self.num_of_actions), dtype=np.float32)))
# zero_val = Variable(np.zeros((self.replay_size, self.num_of_actions), dtype=np.float32))
loss = F.mean_squared_error(td_clip, zero_val)
return loss, Q
def stockExperience(self, time,
state, action, reward, state_dash,
episode_end_flag):
data_index = time % self.data_size
if episode_end_flag is True:
self.D[0][data_index] = state
self.D[1][data_index] = action
self.D[2][data_index] = reward
#.........这里部分代码省略.........
示例11: Replay
# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l1 [as 别名]
class DQN_class:
# Hyper-Parameters
gamma = 0.99 # Discount factor
initial_exploration = 100#10**4 # Initial exploratoin. original: 5x10^4
replay_size = 32 # Replay (batch) size
target_model_update_freq = 10**4 # Target update frequancy. original: 10^4
data_size = 10**5 #10**5 # Data size of history. original: 10^6
def __init__(self, enable_controller=[0, 3, 4]):
self.num_of_actions = len(enable_controller)
self.enable_controller = enable_controller # Default setting : "Pong"
print "Initializing DQN..."
print "Model Building"
self.CNN_model = FunctionSet(
l1=F.Convolution2D(4, 32, ksize=8, stride=4, nobias=False, wscale=np.sqrt(2)),
l2=F.Convolution2D(32, 64, ksize=4, stride=2, nobias=False, wscale=np.sqrt(2)),
l3=F.Convolution2D(64, 64, ksize=3, stride=1, nobias=False, wscale=np.sqrt(2)),
)
self.model = FunctionSet(
l4=F.Linear(3136, 512, wscale=np.sqrt(2)),
q_value=F.Linear(512, self.num_of_actions,
initialW=np.zeros((self.num_of_actions, 512),
dtype=np.float32))
).to_gpu()
d = 'elite/'
self.CNN_model.l1.W.data = np.load(d+'l1_W.npy')#.astype(np.float32)
self.CNN_model.l1.b.data = np.load(d+'l1_b.npy')#.astype(np.float32)
self.CNN_model.l2.W.data = np.load(d+'l2_W.npy')#.astype(np.float32)
self.CNN_model.l2.b.data = np.load(d+'l2_b.npy')#.astype(np.float32)
self.CNN_model.l3.W.data = np.load(d+'l3_W.npy')#.astype(np.float32)
self.CNN_model.l3.b.data = np.load(d+'l3_b.npy')#.astype(np.float32)
self.CNN_model = self.CNN_model.to_gpu()
self.CNN_model_target = copy.deepcopy(self.CNN_model)
self.model_target = copy.deepcopy(self.model)
print "Initizlizing Optimizer"
self.optimizer = optimizers.RMSpropGraves(lr=0.00025, alpha=0.95, momentum=0.95, eps=0.0001)
self.optimizer.setup(self.model.collect_parameters())
# History Data : D=[s, a, r, s_dash, end_episode_flag]
self.D = [np.zeros((self.data_size, 4, 84, 84), dtype=np.uint8),
np.zeros(self.data_size, dtype=np.uint8),
np.zeros((self.data_size, 1), dtype=np.int8),
np.zeros((self.data_size, 4, 84, 84), dtype=np.uint8),
np.zeros((self.data_size, 1), dtype=np.bool),
np.zeros((self.data_size, 1), dtype=np.uint8)]
def forward(self, state, action, Reward, state_dash, episode_end):
num_of_batch = state.shape[0]
s = Variable(state)
s_dash = Variable(state_dash)
Q = self.Q_func(s) # Get Q-value
# Generate Target Signals
tmp = self.Q_func_target(s_dash) # Q(s',*)
tmp = list(map(np.max, tmp.data.get())) # max_a Q(s',a)
max_Q_dash = np.asanyarray(tmp, dtype=np.float32)
target = np.asanyarray(Q.data.get(), dtype=np.float32)
for i in xrange(num_of_batch):
if not episode_end[i][0]:
tmp_ = np.sign(Reward[i]) + self.gamma * max_Q_dash[i]
else:
tmp_ = np.sign(Reward[i])
action_index = self.action_to_index(action[i])
target[i, action_index] = tmp_
# TD-error clipping
td = Variable(cuda.to_gpu(target)) - Q # TD error
td_tmp = td.data + 1000.0 * (abs(td.data) <= 1) # Avoid zero division
td_clip = td * (abs(td.data) <= 1) + td/abs(td_tmp) * (abs(td.data) > 1)
zero_val = Variable(cuda.to_gpu(np.zeros((self.replay_size, self.num_of_actions), dtype=np.float32)))
loss = F.mean_squared_error(td_clip, zero_val)
return loss, Q
def stockExperience(self, time,
state, action, lstm_reward, state_dash,
episode_end_flag, ale_reward):
data_index = time % self.data_size
if episode_end_flag is True:
self.D[0][data_index] = state
self.D[1][data_index] = action
self.D[2][data_index] = lstm_reward
self.D[5][data_index] = ale_reward
else:
self.D[0][data_index] = state
#.........这里部分代码省略.........
示例12: ChainerAgent
# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l1 [as 别名]
class ChainerAgent(Agent):
def __init__(self, epsilon=1.0, frames_per_action=4):
super(ChainerAgent, self).__init__()
cuda.init()
self.epsilon = epsilon
self.gamma = 0.99
self.iterations = 0
self.model = FunctionSet(
l1 = F.Linear(9 * frames_per_action, 256),
l2 = F.Linear(256, 256),
l3 = F.Linear(256, 256),
l4 = F.Linear(256, 2),
).to_gpu()
self.optimizer = optimizers.RMSprop(lr=1e-5)
self.optimizer.setup(self.model)
self.update_target()
self.num_frames = 0
self.frames_per_action = frames_per_action
self.prev_reward = 0.0
self.history = ChainHistory(state_len=(9 * frames_per_action))
def forward(self, state, action, reward, new_state, is_terminal):
q = self.get_q(Variable(state))
q_target = self.get_target_q(Variable(new_state))
max_target_q = cp.max(q_target.data, axis=1)
target = cp.copy(q.data)
for i in xrange(target.shape[0]):
curr_action = int(action[i])
if is_terminal[i]:
target[i, curr_action] = reward[i]
else:
target[i, curr_action] = reward[i] + self.gamma * max_target_q[i]
loss = F.mean_squared_error(Variable(target), q)
return loss, 0.0 #cp.mean(q.data[:, action[i]])
def get_q(self, state):
h1 = F.relu(self.model.l1(state))
h2 = F.relu(self.model.l2(h1))
h3 = F.relu(self.model.l3(h2))
return self.model.l4(h3)
def get_target_q(self, state):
h1 = F.relu(self.target_model.l1(state))
h2 = F.relu(self.target_model.l2(h1))
h3 = F.relu(self.target_model.l3(h2))
return self.target_model.l4(h3)
def accept_reward(self, state, action, reward, new_state, is_terminal):
self.prev_reward += reward
if not (is_terminal or self.num_frames % self.frames_per_action == 0):
return
if self.num_frames == self.frames_per_action:
self.prev_reward = 0.0
self.prev_action = action
return
self.history.add((self.prev_state, self.prev_action, self.prev_reward,
self.curr_state, is_terminal))
self.prev_reward = 0.0
self.prev_action = action
self.iterations += 1
if self.iterations % 10000 == 0:
print '*** UPDATING TARGET NETWORK ***'
self.update_target()
state, action, reward, new_state, is_terminal = self.history.get(num=32)
state = cuda.to_gpu(state)
action = cuda.to_gpu(action)
new_state = cuda.to_gpu(new_state)
reward = cuda.to_gpu(reward)
loss, q = self.forward(state, action, reward, new_state, is_terminal)
self.optimizer.zero_grads()
loss.backward()
self.optimizer.update()
def update_state_vector(self, state):
if self.num_frames < self.frames_per_action:
if self.num_frames == 0:
self.curr_state = state
else:
self.curr_state = np.hstack((self.curr_state, state))
else:
if self.num_frames < 2 * self.frames_per_action:
if self.num_frames == self.frames_per_action:
self.prev_state = np.copy(self.curr_state[:, :9])
else:
self.prev_state = np.hstack((self.prev_state, self.curr_state[:, :9]))
#.........这里部分代码省略.........
示例13: SDA
# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l1 [as 别名]
class SDA(object):
def __init__(
self,
rng,
data,
target,
n_inputs=784,
n_hidden=[784,784,784],
n_outputs=10,
corruption_levels=[0.1,0.2,0.3],
gpu=-1):
self.model = FunctionSet(
l1=F.Linear(n_inputs, n_hidden[0]),
l2=F.Linear(n_hidden[0], n_hidden[1]),
l3=F.Linear(n_hidden[1], n_hidden[2]),
l4=F.Linear(n_hidden[2], n_outputs)
)
if gpu >= 0:
self.model.to_gpu()
self.rng = rng
self.gpu = gpu
self.data = data
self.target = target
self.x_train, self.x_test = data
self.y_train, self.y_test = target
self.n_train = len(self.y_train)
self.n_test = len(self.y_test)
self.corruption_levels = corruption_levels
self.n_inputs = n_inputs
self.n_hidden = n_hidden
self.n_outputs = n_outputs
self.dae1 = None
self.dae2 = None
self.dae3 = None
self.optimizer = None
self.setup_optimizer()
self.train_accuracies = []
self.train_losses = []
self.test_accuracies = []
self.test_losses = []
def setup_optimizer(self):
self.optimizer = optimizers.AdaDelta()
self.optimizer.setup(self.model)
@property
def xp(self):
return cuda.cupy if self.gpu >= 0 else numpy
def pre_train(self, n_epoch=20, batchsize=100):
first_inputs = self.data
# initialize first dAE
self.dae1 = DA(self.rng,
data=first_inputs,
n_inputs=self.n_inputs,
n_hidden=self.n_hidden[0],
corruption_level=self.corruption_levels[0],
gpu=self.gpu)
# train first dAE
logging.info("--------First DA training has started!--------")
self.dae1.train_and_test(n_epoch=n_epoch, batchsize=batchsize)
self.dae1.to_cpu()
# compute second iputs for second dAE
tmp1 = self.dae1.compute_hidden(first_inputs[0])
tmp2 = self.dae1.compute_hidden(first_inputs[1])
if self.gpu >= 0:
self.dae1.to_gpu()
second_inputs = [tmp1, tmp2]
# initialize second dAE
self.dae2 = DA(
self.rng,
data=second_inputs,
n_inputs=self.n_hidden[0],
n_hidden=self.n_hidden[1],
corruption_level=self.corruption_levels[1],
gpu=self.gpu
)
# train second dAE
logging.info("--------Second DA training has started!--------")
self.dae2.train_and_test(n_epoch=n_epoch, batchsize=batchsize)
self.dae2.to_cpu()
# compute third inputs for third dAE
tmp1 = self.dae2.compute_hidden(second_inputs[0])
tmp2 = self.dae2.compute_hidden(second_inputs[1])
if self.gpu >= 0:
self.dae2.to_gpu()
third_inputs = [tmp1, tmp2]
# initialize third dAE
#.........这里部分代码省略.........
示例14: Replay
# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l1 [as 别名]
class DQN_class:
# Hyper-Parameters
gamma = 0.99 # Discount factor
initial_exploration = 5*10**4 # 10**4 # Initial exploratoin. original: 5x10^4
replay_size = 32 # Replay (batch) size
target_model_update_freq = 10**4 # Target update frequancy. original: 10^4
data_size = 10**6 # Data size of history. original: 10^6
num_of_actions = 2 # Action dimention
num_of_states = 12 # State dimention
def __init__(self):
print "Initializing DQN..."
# Initialization of Chainer 1.1.0 or older.
# print "CUDA init"
# cuda.init()
print "Model Building"
# self.model = FunctionSet(
# l1=F.Convolution2D(4, 32, ksize=8, stride=4, nobias=False, wscale=np.sqrt(2)),
# l2=F.Convolution2D(32, 64, ksize=4, stride=2, nobias=False, wscale=np.sqrt(2)),
# l3=F.Convolution2D(64, 64, ksize=3, stride=1, nobias=False, wscale=np.sqrt(2)),
# l4=F.Linear(3136, 512, wscale=np.sqrt(2)),
# q_value=F.Linear(512, self.num_of_actions,
# initialW=np.zeros((self.num_of_actions, 512),
# dtype=np.float32))
# ).to_gpu()
# self.critic = FunctionSet(
# l1=F.Linear(self.num_of_actions+self.num_of_states,512),
# l2=F.Linear(512,256),
# l3=F.Linear(256,128),
# q_value=F.Linear(128,1,initialW=np.zeros((1,128),dtype=np.float32))
# ).to_gpu()
#
# self.actor = FunctionSet(
# l1=F.Linear(self.num_of_states,512),
# l2=F.Linear(512,256),
# l3=F.Linear(256,128),
# a_value=F.Linear(128,self.num_of_actions,initialW=np.zeros((1,128),dtype=np.float32))
# ).to_gpu()
self.critic = FunctionSet(
l1=F.Linear(self.num_of_actions+self.num_of_states,1024),
l2=F.Linear(1024,512),
l3=F.Linear(512,256),
l4=F.Linear(256,128),
q_value=F.Linear(128,1,initialW=np.zeros((1,128),dtype=np.float32))
).to_gpu()
self.actor = FunctionSet(
l1=F.Linear(self.num_of_states,1024),
l2=F.Linear(1024,512),
l3=F.Linear(512,256),
l4=F.Linear(256,128),
a_value=F.Linear(128,self.num_of_actions,initialW=np.zeros((1,128),dtype=np.float32))
).to_gpu()
# self.critic = FunctionSet(
# l1=F.Linear(self.num_of_actions+self.num_of_states,1024,wscale=0.01*math.sqrt(self.num_of_actions+self.num_of_states)),
# l2=F.Linear(1024,512,wscale=0.01*math.sqrt(1024)),
# l3=F.Linear(512,256,wscale=0.01*math.sqrt(512)),
# l4=F.Linear(256,128,wscale=0.01*math.sqrt(256)),
# q_value=F.Linear(128,1,wscale=0.01*math.sqrt(128))
# ).to_gpu()
#
# self.actor = FunctionSet(
# l1=F.Linear(self.num_of_states,1024,wscale=0.01*math.sqrt(self.num_of_states)),
# l2=F.Linear(1024,512,wscale=0.01*math.sqrt(1024)),
# l3=F.Linear(512,256,wscale=0.01*math.sqrt(512)),
# l4=F.Linear(256,128,wscale=0.01*math.sqrt(256)),
# a_value=F.Linear(128,self.num_of_actions,wscale=0.01*math.sqrt(128))
# ).to_gpu()
self.critic_target = copy.deepcopy(self.critic)
self.actor_target = copy.deepcopy(self.actor)
print "Initizlizing Optimizer"
#self.optim_critic = optimizers.RMSpropGraves(lr=0.0001, alpha=0.95, momentum=0.95, eps=0.0001)
#self.optim_actor = optimizers.RMSpropGraves(lr=0.0001, alpha=0.95, momentum=0.95, eps=0.0001)
self.optim_critic = optimizers.Adam(alpha=0.00001)
self.optim_actor = optimizers.Adam(alpha=0.00001)
self.optim_critic.setup(self.critic)
self.optim_actor.setup(self.actor)
# self.optim_critic.add_hook(chainer.optimizer.WeightDecay(0.00001))
# self.optim_critic.add_hook(chainer.optimizer.GradientClipping(10))
# self.optim_actor.add_hook(chainer.optimizer.WeightDecay(0.00001))
# self.optim_actor.add_hook(chainer.optimizer.GradientClipping(10))
# History Data : D=[s, a, r, s_dash, end_episode_flag]
self.D = [np.zeros((self.data_size, self.num_of_states), dtype=np.float32),
np.zeros((self.data_size, self.num_of_actions), dtype=np.float32),
np.zeros((self.data_size, 1), dtype=np.float32),
np.zeros((self.data_size, self.num_of_states), dtype=np.float32),
np.zeros((self.data_size, 1), dtype=np.bool)]
# with open('dqn_dump.json', 'a') as f:
# json.dump(datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S'), f)
# f.write('\n')
#.........这里部分代码省略.........
示例15: MLP
# 需要导入模块: from chainer import FunctionSet [as 别名]
# 或者: from chainer.FunctionSet import l1 [as 别名]
class MLP(Base):
def __init__(self, data=None, target=None, n_inputs=784, n_hidden=784, n_outputs=10, gpu=-1):
self.excludes.append('xp')
self.model = FunctionSet(l1=F.Linear(n_inputs, n_hidden),
l2=F.Linear(n_hidden, n_hidden),
l3=F.Linear(n_hidden, n_outputs))
if gpu >= 0:
self.model.to_gpu()
self.xp = cuda.cupy
else:
self.xp = np
if not data is None:
self.x_train, self.x_test = data
else:
self.x_train, self.y_test = None, None
if not target is None:
self.y_train, self.y_test = target
self.n_train = len(self.y_train)
self.n_test = len(self.y_test)
else:
self.y_train, self.y_test = None, None
self.n_train = 0
self.n_test = 0
self.gpu = gpu
self.optimizer = optimizers.Adam()
self.optimizer.setup(self.model)
def forward(self, x_data, y_data, train=True):
x, t = Variable(x_data), Variable(y_data)
h1 = F.dropout(F.relu(self.model.l1(x)), train=train)
h2 = F.dropout(F.relu(self.model.l2(h1)), train=train)
y = self.model.l3(h2)
return F.softmax_cross_entropy(y, t), F.accuracy(y, t)
def train_and_test(self, n_epoch=20, batchsize=100):
for epoch in xrange(1, n_epoch+1):
print 'epoch', epoch
perm = np.random.permutation(self.n_train)
sum_accuracy = 0
sum_loss = 0
for i in xrange(0, self.n_train, batchsize):
x_batch = self.xp.asarray(self.x_train[perm[i:i+batchsize]])
y_batch = self.xp.asarray(self.y_train[perm[i:i+batchsize]])
real_batchsize = len(x_batch)
self.optimizer.zero_grads()
loss, acc = self.forward(x_batch, y_batch)
loss.backward()
self.optimizer.update()
sum_loss += float(cuda.to_cpu(loss.data)) * real_batchsize
sum_accuracy += float(cuda.to_cpu(acc.data)) * real_batchsize
print 'train mean loss={}, accuracy={}'.format(sum_loss/self.n_train, sum_accuracy/self.n_train)
# evalation
sum_accuracy = 0
sum_loss = 0
for i in xrange(0, self.n_test, batchsize):
x_batch = self.xp.asarray(self.x_test[i:i+batchsize])
y_batch = self.xp.asarray(self.y_test[i:i+batchsize])
real_batchsize = len(x_batch)
loss, acc = self.forward(x_batch, y_batch, train=False)
sum_loss += float(cuda.to_cpu(loss.data)) * real_batchsize
sum_accuracy += float(cuda.to_cpu(acc.data)) * real_batchsize
print 'test mean loss={}, accuracy={}'.format(sum_loss/self.n_test, sum_accuracy/self.n_test)