当前位置: 首页>>代码示例>>Python>>正文


Python HPlotContainer.spacing方法代码示例

本文整理汇总了Python中chaco.api.HPlotContainer.spacing方法的典型用法代码示例。如果您正苦于以下问题:Python HPlotContainer.spacing方法的具体用法?Python HPlotContainer.spacing怎么用?Python HPlotContainer.spacing使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在chaco.api.HPlotContainer的用法示例。


在下文中一共展示了HPlotContainer.spacing方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _plot_default

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import spacing [as 别名]
 def _plot_default(self):
     data = self.data < self.limit
     pd = self.pd = ArrayPlotData(imagedata=data,orig=self.data)
     plot1 = Plot(pd, default_origin='top left')
     plot2 = Plot(pd, default_origin='top left')
     img_plot1 = plot1.img_plot("imagedata",colormap=gray,padding=0)[0]
     img_plot2 = plot2.img_plot("orig",colormap=gray,padding=0)[0]
     container = HPlotContainer(plot1,plot2)
     container.spacing=0
     plot1.padding_right=0
     plot2.padding_left=0
     plot2.y_axis.orientation= 'right'
     return container
开发者ID:michaelaye,项目名称:pymars,代码行数:15,代码来源:fan_finder3.py

示例2: _plot_default

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import spacing [as 别名]
    def _plot_default(self):
        # Create the data and the PlotData object
        x = linspace(-14, 14, 100)
        y = sin(x) * x**3
        plotdata = ArrayPlotData(x = x, y = y)
        # Create the scatter plot
        scatter = Plot(plotdata)
        scatter.plot(("x", "y"), type="scatter", color="blue")
        # Create the line plot
        line = Plot(plotdata)
        line.plot(("x", "y"), type="line", color="blue")
        # Create a horizontal container and put the two plots inside it
        container = HPlotContainer(scatter, line)
        container.spacing = 0
        scatter.padding_right = 0
        line.padding_left = 0
        line.y_axis.orientation = "right"

        return container
开发者ID:PlamenStilyianov,项目名称:Python,代码行数:21,代码来源:container_nospace.py

示例3: __init__

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import spacing [as 别名]
    def __init__(self):
        super(ContainerExample, self).__init__()

        x = linspace(-14, 14, 100)
        y = sin(x) * x ** 3
        plotdata = ArrayPlotData(x=x, y=y)

        scatter = Plot(plotdata)
        scatter.plot(("x", "y"), type="scatter", color="blue")

        line = Plot(plotdata)
        line.plot(("x", "y"), type="line", color="blue")

        container = HPlotContainer(scatter, line)

        #Making the plots touch in the middle
        container.spacing = 0
        scatter.padding_right = 0
        line.padding_left = 0
        line.y_axis.orientation = "right"

        self.plot = container
开发者ID:SavinaRoja,项目名称:fajada,代码行数:24,代码来源:horizontal_plot_container.py

示例4: create_SourcePlot

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import spacing [as 别名]

#.........这里部分代码省略.........
        self.SourceFuncPlot.range2d.x_range.set_bounds(self.new_vaxis[0], self.new_vaxis[-1])
        self.SourceFuncPlot.range2d.y_range.set_bounds(self.new_height[0], self.new_height[-1])
	
	
	#---------------------Create Tau * Exp(-tau) plot---------------------
	tauCalcTE = (tau*N.exp(-tau))
        tauCalcTE = tauCalcTE[:, ::-1]
    
        new_tauCalcTE = lineformInterpolate2D(vaxis, height, tauCalcTE, self.new_vaxis, self.new_height)
    
    
        self._image_indexTE = GridDataSource(xdata = self.new_vaxis, ydata = self.new_height)     
        index_mapperTE = GridMapper(range = DataRange2D(self._image_indexTE))
        self._image_valueTE = ImageData(data  = new_tauCalcTE, value_depth = 1)
        color_mapperTE = jet(DataRange1D(self._image_valueTE))
    
        self.TauExpPlotData = ArrayPlotData(imagedata = new_tauCalcTE, colormap = color_mapperTE, index = vaxis, TauOne = tau_one, Velocity = vz, Height = height, VelocityZeroXPoints = VelocityZeroXPoints, VelocityZeroYPoints = VelocityZeroYPoints)
        self.TauExpPlot = Plot(self.TauExpPlotData)
        self.TauExpPlot.img_plot1 = self.TauExpPlot.img_plot("imagedata", colormap = color_mapperTE, xbounds = (self.new_vaxis[0], self.new_vaxis[-1]), ybounds = (self.new_height[0], self.new_height[-1]))[0]
        self.TauExpPlot.overlays.append(ZoomTool(self.TauExpPlot.img_plot1))
	self.TauExpPlot.tools.append(PanTool(self.TauExpPlot.img_plot1, drag_button="right"))

	
        self.TauExpPlot.TauOnePlot = self.TauExpPlot.plot(("index","TauOne"), type = "line", color = "red", resizeable = True)
        self.TauExpPlot.VelocityPlot = self.TauExpPlot.plot(("Velocity","Height"), type = "line", color = "green", resizeable = True)
        self.TauExpPlot.VelocityZeroPlot = self.TauExpPlot.plot(("VelocityZeroXPoints","VelocityZeroYPoints"), type = "line", color = "yellow", resizeable = True)
	
        self.TauExpPlot.title = "Tau * Exp Plot"
	self.TauExpPlot.x_axis.title = "Velocity (km/s)"
	self.TauExpPlot.y_axis.title = "Height (Mm)"
        self.TauExpPlot.range2d.x_range.set_bounds(self.new_vaxis[0], self.new_vaxis[-1])
        self.TauExpPlot.range2d.y_range.set_bounds(self.new_height[0], self.new_height[-1])
    
        self.TauExpPlotC = OverlayPlotContainer()
        self.TauExpPlotC.add(self.TauExpPlot)

	#--------------------Create Contribution Function Plot------------------------
	new_tau_oneCF = lineformInterpolate1D(vaxis, tau_one, self.new_vaxis)
        new_vzCF = lineformInterpolate1D(height, vz, self.new_height)
        new_bint = lineformInterpolate1D(vaxis, bint, self.new_vaxis)
        
        ContributionFuncCF = (chi*N.exp(-tau)*S)[:,::-1]
        ContributionFuncCF /= N.max(ContributionFuncCF, axis=0)
        new_ContributionPlotCF = lineformInterpolate2D(vaxis, height, ContributionFuncCF, self.new_vaxis , self.new_height)
	
	
        self._image_indexCF = GridDataSource(xdata = self.new_vaxis, ydata = self.new_height)     
        index_mapperCF = GridMapper(range = DataRange2D(self._image_indexCF))
        self._image_valueCF = ImageData(data  = new_ContributionPlotCF, value_depth = 1)
        color_mapperCF = jet(DataRange1D(self._image_valueCF))
        
        self.ContributionFuncPlotData = ArrayPlotData(imagedata = new_ContributionPlotCF, colormap = color_mapperCF, index = vaxis, TauOne = tau_one, Velocity = vz, Height = height, VelocityZeroXPoints = VelocityZeroXPoints, VelocityZeroYPoints = VelocityZeroYPoints)
        self.ContributionFuncPlot = Plot(self.ContributionFuncPlotData)
        self.ContributionFuncPlot.img_plot1 = self.ContributionFuncPlot.img_plot("imagedata", colormap = color_mapperCF, xbounds = (self.new_vaxis[0], self.new_vaxis[-1]), ybounds = (self.new_height[0], self.new_height[-1]))[0]
	self.ContributionFuncPlot.overlays.append(ZoomTool(self.ContributionFuncPlot.img_plot1))
	self.ContributionFuncPlot.tools.append(PanTool(self.ContributionFuncPlot.img_plot1, drag_button="right"))

        self.ContributionFuncPlot.TauOnePlot = self.ContributionFuncPlot.plot(("index","TauOne"), type = "line", color = "red", resizeable = True)
        self.ContributionFuncPlot.VelocityPlot = self.ContributionFuncPlot.plot(("Velocity","Height"), type = "line", color = "green", resizeable = True)
        self.ContributionFuncPlot.VelocityZeroPlot = self.ContributionFuncPlot.plot(("VelocityZeroXPoints","VelocityZeroYPoints"), type = "line", color = "yellow", resizeable = True)
    
        self.IntensityPlotData = ArrayPlotData(index = self.new_vaxis, bint = new_bint)
        self.IntensityPlot = Plot(self.IntensityPlotData)
        self.IntensityPlot.intensity = self.IntensityPlot.plot(("index","bint"), color = 'white', line_width = 2.0)
        self.IntensityPlot.y_axis.orientation = 'right'
        self.IntensityPlot.y_axis.title = "I_v (kK)"
        self.IntensityPlot.default_origin = 'bottom right'
        self.IntensityPlot.x_grid.visible = False
        self.IntensityPlot.y_grid.visible = False
        self.IntensityPlot.x_axis.visible = False
        self.IntensityPlot.x_axis = self.ContributionFuncPlot.x_axis
        self.IntensityPlot.range2d.y_range.set_bounds(3,7)
        #right_axis = LabelAxis(IntensityPlot, orientation = 'right')
        #IntensityPlot.underlays.append(right_axis)
	
	
        
        self.ContributionFuncPlot.title = "Contribution Function Plot"
	self.ContributionFuncPlot.x_axis.title = "Velocity (km/s)"
	self.ContributionFuncPlot.y_axis.title = "Height (Mm)"
        self.ContributionFuncPlot.range2d.x_range.set_bounds(self.new_vaxis[0], self.new_vaxis[-1])
        self.ContributionFuncPlot.range2d.y_range.set_bounds(self.new_height[0], self.new_height[-1])
	
        self.ContributionFuncPlotC = OverlayPlotContainer()
        self.ContributionFuncPlotC.add(self.ContributionFuncPlot)
        self.ContributionFuncPlotC.add(self.IntensityPlot)
	
	
	#-------------------------------Final Container Construction-------------------------------
	self.TauExpPlot.range2d = self.ChiTauPlot.range2d
	self.ContributionFuncPlot.range2d = self.ChiTauPlot.range2d
	self.SourceFuncPlot.range2d = self.ChiTauPlot.range2d
        self.LeftPlots = VPlotContainer(self.TauExpPlotC, self.ChiTauPlotC, background = "lightgray", use_back_buffer = True)
        self.LeftPlots.spacing = 0
        self.RightPlots = VPlotContainer(self.ContributionFuncPlotC, self.SourceFuncPlotC, background = "lightgray", use_back_buffer = True)
        self.RightPlots.spacing = 0
	
        MainContainer = HPlotContainer(self.LeftPlots, self.RightPlots, background = "lightgray", use_back_buffer = True)
        MainContainer.spacing = 0
        self.PrimaryPlotC = MainContainer 
开发者ID:peterlandgren,项目名称:NCDF-Viewer,代码行数:104,代码来源:NCDFViewer.py

示例5: create_PrimaryPlotC

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import spacing [as 别名]
    def create_PrimaryPlotC(self):
	#Extracts the data for the main plot
        self.MainPlotData = self.IntensityData[:,:,self.intensityindex]
	self.markerplotdatax = []
	self.markerplotdatay = []
	self.SpectraMultiple = 1.0e+8
	WavelengthXPoints = [self.Wavelength, self.Wavelength]
	WavelengthYPoints = [N.min(self.IntensityData[:,:])*self.SpectraMultiple, N.max(self.IntensityData[:,:])*self.SpectraMultiple]
	WavelengthXPointsStatic = WavelengthXPoints
	WavelengthYPointsStatic = WavelengthYPoints

	AvgIntensity = N.mean(N.mean(self.IntensityData, axis = 0), axis = 0)
	print "mean computed-------------------"

        #Create main Plot (intensity plot)
        self.Mainplotdata = ArrayPlotData(Mainimagedata = self.MainPlotData, markerplotdatax = self.markerplotdatax, markerplotdatay = self.markerplotdatay)
        self.Mainplot = Plot(self.Mainplotdata)
        self.Main_img_plot = self.Mainplot.img_plot("Mainimagedata", colormap = jet)[0]
	
	#Create marker wneh x is pressed
	self.Mainplot.MarkerPlot = self.Mainplot.plot(("markerplotdatax","markerplotdatay"),type = 'line', color = 'white')

        #Create overlaid crosshairs for Main plot
        LineInspector1 = LineInspector(component = self.Main_img_plot,axis = 'index_x', write_metadata=True,is_listener = False,inspect_mode="indexed")            
        self.Main_img_plot.overlays.append(LineInspector1)
        LineInspector2 = LineInspector(component = self.Main_img_plot,axis = 'index_y', write_metadata=True,is_listener = False,inspect_mode="indexed")
        self.Main_img_plot.overlays.append(LineInspector2)

        #Create overlay tools and add them to main plot
        Main_imgtool = ImageInspectorTool(self.Main_img_plot)
        self.Main_img_plot.tools.append(Main_imgtool)
        Main_overlay = ImageInspectorOverlay(component = self.Main_img_plot, image_inspector = Main_imgtool, bgcolor = "white", border_visible = True)
        self.Main_img_plot.overlays.append(Main_overlay)

        #Sync up inspector position so it can be passed to the spectra plot
        Main_overlay.sync_trait('InspectorPosition', self, 'InspectorPosition', mutual = True)
	Main_imgtool.sync_trait('ImageLock', self, 'ImageLock')
	Main_imgtool.sync_trait('SaveFlag', self, 'SaveFlag')
	
	#Sync up max and min colormap value
	self.Main_img_plot.value_range.sync_trait('low', self, 'colormapmin', mutual = True)
	self.Main_img_plot.value_range.sync_trait('high', self, 'colormapmax', mutual = True)
	
        #Create spectra plot for a single column
	self.Spectraplotdata = ArrayPlotData(x = self.WavelengthData[:], y = (self.IntensityData[2,2] * self.SpectraMultiple), WavelengthXPointsStatic = WavelengthXPointsStatic, WavelengthYPointsStatic = WavelengthYPointsStatic, WavelengthXPoints = WavelengthXPoints, WavelengthYPoints = WavelengthYPoints, AvgIntensity = AvgIntensity * self.SpectraMultiple, is_listener = True)
        self.Spectraplot1 = Plot(self.Spectraplotdata)
        self.Spectraplot1.plot(("x","y"), type = "line", color = "blue")
        self.Spectraplot1.plot( ("WavelengthXPointsStatic","WavelengthYPointsStatic"), type = 'line', line_style = 'dash', color = 'green')
	self.Spectraplot1.plot( ("WavelengthXPoints","WavelengthYPoints"), type = 'line', line_style = 'dash', color = 'red')
	self.Spectraplot1.plot( ("x","AvgIntensity"), type = 'line', color = 'black')
        
	#Change Plot characteristics
	#Sets width around waveref to examine
	self.xlowspread = 1.
        self.xhighspread = 1.
        self.Spectraplot1.range2d.x_range.set_bounds(self.wave_ref - self.xlowspread, self.wave_ref + self.xhighspread)
        self.Spectraplot1.x_axis.title = "Wavelength (A)"
        self.Spectraplot1.y_axis.title = "Intensity (J s^-1 m^-2 Hz^-1 sr^-1)"
        self.rangearray = self.IntensityData[:,:]
        self.rangearray = self.rangearray[:,:,N.argmin(N.abs(self.WavelengthData[:]-(self.wave_ref-self.xlowspread))):N.argmin(N.abs(self.WavelengthData[:]-(self.wave_ref+self.xhighspread)))]
        self.Spectraplot1.range2d.y_range.set_bounds(N.min(self.rangearray[:,:])*self.SpectraMultiple, N.max(self.rangearray[:,:])   * self.SpectraMultiple)
	#self.Spectraplot1.range2d.y_range.set_bounds(N.min(self.rangearray[:,:])*self.SpectraMultiple, Scaling * (N.max(self.rangearray[:,:]) - N.min(self.rangearray[:,:])) + N.min(self.rangearray[:,:])  * self.SpectraMultiple)


        #add some standard tools. Note, I'm assigning the PanTool to the 
        #right mouse-button to avoid conflicting with the cursors
        self.Mainplot.tools.append(PanTool(self.Main_img_plot, drag_button="right"))
	self.Spectraplot1.tools.append(PanTool(self.Spectraplot1, drag_button="right"))
        self.Mainplot.overlays.append(ZoomTool(self.Main_img_plot))
        self.Spectraplot1.overlays.append(ZoomTool(self.Spectraplot1))

        #Changing interactive options
        zoom = ZoomTool(component=self.Mainplot, tool_mode="box", always_on=False)

        #Create Container for main plot                                  
        MainContainer = HPlotContainer(self.Mainplot, self.Spectraplot1, background = "lightgray", use_back_buffer = True)
        MainContainer.spacing = 25
        self.PrimaryPlotC = MainContainer
开发者ID:peterlandgren,项目名称:NCDF-Viewer,代码行数:80,代码来源:NCDFViewer.py


注:本文中的chaco.api.HPlotContainer.spacing方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。