本文整理汇总了Python中chaco.api.HPlotContainer.remove方法的典型用法代码示例。如果您正苦于以下问题:Python HPlotContainer.remove方法的具体用法?Python HPlotContainer.remove怎么用?Python HPlotContainer.remove使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类chaco.api.HPlotContainer
的用法示例。
在下文中一共展示了HPlotContainer.remove方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: CellCropper
# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import remove [as 别名]
#.........这里部分代码省略.........
self.container.request_redraw()
self.img_container.request_redraw()
except:
pass
@on_trait_change('thresh_upper,thresh_lower')
def manual_thresh_update(self):
self.thresh=[self.thresh_lower,self.thresh_upper]
self.cmap_renderer.color_data.metadata['selections']=self.thresh
self.cmap_renderer.color_data.metadata_changed={'selections':self.thresh}
self.container.request_redraw()
self.img_container.request_redraw()
@on_trait_change('peaks,cbar_selection:selection,img_idx')
def calc_numpeaks(self):
try:
thresh=self.cbar_selection.selection
self.thresh=thresh
except:
thresh=[]
if thresh==[] or thresh==() or thresh==None:
thresh=(-1,1)
self.numpeaks_total=int(np.sum([np.sum(np.ma.masked_inside(self.peaks[i][:,2],thresh[0],thresh[1]).mask) for i in xrange(len(self.peaks))]))
try:
self.numpeaks_img=int(np.sum(np.ma.masked_inside(self.peaks[self.img_idx][:,2],thresh[0],thresh[1]).mask))
except:
self.numpeaks_img=0
@on_trait_change('findpeaks')
def locate_peaks(self):
peaks=[]
progress = ProgressDialog(title="Peak finder progress", message="Finding peaks on %s images"%self.numfiles, max=self.numfiles, show_time=True, can_cancel=False)
progress.open()
for idx in xrange(self.numfiles):
self.controller.set_active_index(idx)
self.data = self.controller.get_active_image()[:]
self.CC = cv_funcs.xcorr(self.template, self.data)
# peak finder needs peaks greater than 1. Multiply by 255 to scale them.
pks=pc.two_dim_findpeaks(self.CC*255, peak_width=self.peak_width, medfilt_radius=None)
pks[:,2]=pks[:,2]/255.
peaks.append(pks)
progress.update(idx+1)
#ipdb.set_trace()
self.peaks=peaks
self.redraw_plots()
def mask_peaks(self,idx):
thresh=self.cbar_selection.selection
if thresh==[]:
thresh=(-1,1)
mpeaks=np.ma.asarray(self.peaks[idx])
mpeaks[:,2]=np.ma.masked_outside(mpeaks[:,2],thresh[0],thresh[1])
return mpeaks
@on_trait_change("peaks")
def redraw_plots(self):
oldplot=self.img_plot
self.container.remove(oldplot)
newplot=self.render_image()
self.container.add(newplot)
self.img_plot=newplot
try:
# if these haven't been created before, this will fail. wrap in try to prevent that.
oldscat=self.scatplot
self.container.remove(oldscat)
oldcolorbar = self.colorbar
self.img_container.remove(oldcolorbar)
except:
pass
if self.numpeaks_img>0:
newscat=self.render_scatplot()
self.container.add(newscat)
self.scatplot=newscat
colorbar = self.draw_colorbar()
self.img_container.add(colorbar)
self.colorbar=colorbar
self.container.request_redraw()
self.img_container.request_redraw()
def crop_cells(self):
print "cropping cells..."
for idx in xrange(self.numfiles):
# filter the peaks that are outside the selected threshold
self.controller.set_active_index(idx)
self.data = self.controller.get_active_image()
self.name = self.controller.get_active_name()
peaks=np.ma.compress_rows(self.mask_peaks(idx))
tmp_sz=self.tmp_size
data=np.zeros((peaks.shape[0],tmp_sz,tmp_sz))
if data.shape[0] >0:
for i in xrange(peaks.shape[0]):
# crop the cells from the given locations
data[i,:,:]=self.data[peaks[i,1]:peaks[i,1]+tmp_sz,
peaks[i,0]:peaks[i,0]+tmp_sz]
# send the data to the controller for storage in the chest
self.controller.add_cells(name = self.name, data = data,
locations = peaks)
示例2: TemplatePicker
# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import remove [as 别名]
#.........这里部分代码省略.........
from hyperspy import peak_char as pc
peaks=[]
"""from hyperspy.misc.progressbar import ProgressBar, \
Percentage, RotatingMarker, ETA, Bar
widgets = ['Locating peaks: ', Percentage(), ' ', Bar(marker=RotatingMarker()),
' ', ETA()]
pbar = ProgressBar(widgets=widgets, maxval=100).start()"""
progress = ProgressDialog(title="Peak finder progress", message="Finding peaks on %s images"%self.numfiles, max=self.numfiles, show_time=True, can_cancel=False)
progress.open()
for idx in xrange(self.numfiles):
#pbar.update(float(idx)/self.numfiles*100)
self.CC = cv_funcs.xcorr(self.sig.data[self.tmp_img_idx,
self.top:self.top+self.tmp_size,
self.left:self.left+self.tmp_size],
self.sig.data[idx,:,:])
# peak finder needs peaks greater than 1. Multiply by 255 to scale them.
pks=pc.two_dim_findpeaks(self.CC*255, peak_width=self.peak_width, medfilt_radius=None)
pks[:,2]=pks[:,2]/255.
peaks.append(pks)
progress.update(idx+1)
#pbar.finish()
self.peaks=peaks
def mask_peaks(self,idx):
thresh=self.cbar_selection.selection
if thresh==[]:
thresh=(0,1)
mpeaks=np.ma.asarray(self.peaks[idx])
mpeaks[:,2]=np.ma.masked_outside(mpeaks[:,2],thresh[0],thresh[1])
return mpeaks
@on_trait_change("peaks")
def redraw_plots(self):
oldplot=self.img_plot
self.container.remove(oldplot)
newplot=self.render_image()
self.container.add(newplot)
self.img_plot=newplot
try:
# if these haven't been created before, this will fail. wrap in try to prevent that.
oldscat=self.scatplot
self.container.remove(oldscat)
oldcolorbar = self.colorbar
self.img_container.remove(oldcolorbar)
except:
pass
if self.numpeaks_img>0:
newscat=self.render_scatplot()
self.container.add(newscat)
self.scatplot=newscat
colorbar = self.draw_colorbar()
self.img_container.add(colorbar)
self.colorbar=colorbar
self.container.request_redraw()
self.img_container.request_redraw()
def crop_cells_stack(self):
from hyperspy.signals.aggregate import AggregateCells
if self.numfiles==1:
self.crop_sig=self.crop_cells()
return
else:
crop_agg=[]
for idx in xrange(self.numfiles):
peaks=np.ma.compress_rows(self.mask_peaks(idx))
if peaks.any():
crop_agg.append(self.crop_cells(idx))
self.crop_sig=AggregateCells(*crop_agg)
return
def crop_cells(self,idx=0):
print "cropping cells..."
from hyperspy.signals.image import Image
# filter the peaks that are outside the selected threshold
peaks=np.ma.compress_rows(self.mask_peaks(idx))
tmp_sz=self.tmp_size
data=np.zeros((peaks.shape[0],tmp_sz,tmp_sz))
if not hasattr(self.sig.mapped_parameters,"original_files"):
parent=self.sig
else:
parent=self.sig.mapped_parameters.original_files[self.titles[idx]]
pmp=parent.mapped_parameters
positions=np.zeros((peaks.shape[0],1),dtype=[('filename','a256'),('id','i4'),('position','f4',(1,2))])
for i in xrange(peaks.shape[0]):
# crop the cells from the given locations
data[i,:,:]=self.sig.data[idx,peaks[i,1]:peaks[i,1]+tmp_sz,peaks[i,0]:peaks[i,0]+tmp_sz]
positions[i]=(self.titles[idx],i,peaks[i,:2])
crop_sig=Image({'data':data,
'mapped_parameters':{
'title':'Cropped cells from %s'%self.titles[idx],
'record_by':'image',
'locations':positions,
'original_files':{pmp.title:parent},
}
})
return crop_sig