当前位置: 首页>>代码示例>>Python>>正文


Python HPlotContainer.add方法代码示例

本文整理汇总了Python中chaco.api.HPlotContainer.add方法的典型用法代码示例。如果您正苦于以下问题:Python HPlotContainer.add方法的具体用法?Python HPlotContainer.add怎么用?Python HPlotContainer.add使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在chaco.api.HPlotContainer的用法示例。


在下文中一共展示了HPlotContainer.add方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import add [as 别名]
    def __init__(self):
        # The delegates views don't work unless we caller the superclass __init__
        super(CursorTest, self).__init__()

        container = HPlotContainer(padding=0, spacing=20)
        self.plot = container
        # a subcontainer for the first plot.
        # I'm not sure why this is required. Without it, the layout doesn't work right.
        subcontainer = OverlayPlotContainer(padding=40)
        container.add(subcontainer)

        # make some data
        index = numpy.linspace(-10, 10, 512)
        value = numpy.sin(index)

        # create a LinePlot instance and add it to the subcontainer
        line = create_line_plot([index, value], add_grid=True, add_axis=True, index_sort="ascending", orientation="h")
        subcontainer.add(line)

        # here's our first cursor.
        csr = CursorTool(line, drag_button="left", color="blue")
        self.cursor1 = csr
        # and set it's initial position (in data-space units)
        csr.current_position = 0.0, 0.0

        # this is a rendered component so it goes in the overlays list
        line.overlays.append(csr)

        # some other standard tools
        line.tools.append(PanTool(line, drag_button="right"))
        line.overlays.append(ZoomTool(line))

        # make some 2D data for a colourmap plot
        xy_range = (-5, 5)
        x = numpy.linspace(xy_range[0], xy_range[1], 100)
        y = numpy.linspace(xy_range[0], xy_range[1], 100)
        X, Y = numpy.meshgrid(x, y)
        Z = numpy.sin(X) * numpy.arctan2(Y, X)

        # easiest way to get a CMapImagePlot is to use the Plot class
        ds = ArrayPlotData()
        ds.set_data("img", Z)

        img = Plot(ds, padding=40)
        cmapImgPlot = img.img_plot("img", xbounds=xy_range, ybounds=xy_range, colormap=jet)[0]

        container.add(img)

        # now make another cursor
        csr2 = CursorTool(cmapImgPlot, drag_button="left", color="white", line_width=2.0)
        self.cursor2 = csr2

        csr2.current_position = 1.0, 1.5

        cmapImgPlot.overlays.append(csr2)

        # add some standard tools. Note, I'm assigning the PanTool to the
        # right mouse-button to avoid conflicting with the cursors
        cmapImgPlot.tools.append(PanTool(cmapImgPlot, drag_button="right"))
        cmapImgPlot.overlays.append(ZoomTool(cmapImgPlot))
开发者ID:BenChristenson,项目名称:chaco,代码行数:62,代码来源:cursor_tool_demo.py

示例2: _create_plot_component

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import add [as 别名]
def _create_plot_component():

    # Create some x-y data series to plot
    x = linspace(-2.0, 10.0, 100)
    pd = ArrayPlotData(index = x)
    for i in range(5):
        pd.set_data("y" + str(i), jn(i,x))

    # Create some line plots of some of the data
    plot1 = Plot(pd, title="Line Plot", padding=50, border_visible=True)
    plot1.legend.visible = True
    plot1.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="red")
    plot1.plot(("index", "y3"), name="j_3", color="blue")

    # Attach some tools to the plot
    plot1.tools.append(PanTool(plot1))
    zoom = ZoomTool(component=plot1, tool_mode="box", always_on=False)
    plot1.overlays.append(zoom)

    # Create a second scatter plot of one of the datasets, linking its
    # range to the first plot
    plot2 = Plot(pd, range2d=plot1.range2d, title="Scatter plot", padding=50,
                 border_visible=True)
    plot2.plot(('index', 'y3'), type="scatter", color="blue", marker="circle")

    # Create a container and add our plots
    container = HPlotContainer()
    container.add(plot1)
    container.add(plot2)

    return container
开发者ID:5n1p,项目名称:chaco,代码行数:33,代码来源:line_plot1.py

示例3: _hist2d_default

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import add [as 别名]
    def _hist2d_default(self):
        plot = Plot(self.hist2d_data, padding=(20, 0, 0, 40))
        plot.img_plot("H", xbounds=self.xedges, ybounds=self.yedges, colormap=jet)
        plot.index_axis.title = "Voxel dist."
        plot.value_axis.title = "Root Square Error"

        # Create a colorbar
        colormap = plot.color_mapper
        colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range),
                            color_mapper=colormap,
                            plot=plot,
                            orientation='v',
                            resizable='v',
                            width=20,
                            padding=(20, 30, 0, 0))
        colorbar.padding_top = plot.padding_top
        colorbar.padding_bottom = plot.padding_bottom

        # Create a container to position the plot and the colorbar side-by-side
        container = HPlotContainer(use_backbuffer=True, padding=0)
        container.add(colorbar)
        container.add(plot)
        container.bgcolor = "lightgray"

        return container
开发者ID:MarcCote,项目名称:brainsearch,代码行数:27,代码来源:vizu_chaco.py

示例4: _container_default

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import add [as 别名]
    def _container_default(self):
        x = arange(-5.0, 15.0, 20.0/100)

        y = jn(0, x)
        left_plot = create_line_plot((x, y), bgcolor="white",
                                     add_grid=True, add_axis=True)
        left_plot.tools.append(PanTool(left_plot))
        self.left_plot = left_plot

        y = jn(1, x)
        right_plot = create_line_plot((x, y), bgcolor="white",
                                      add_grid=True, add_axis=True)
        right_plot.tools.append(PanTool(right_plot))
        right_plot.y_axis.orientation = "right"
        self.right_plot = right_plot

        # Tone down the colors on the grids
        right_plot.hgrid.line_color = (0.3, 0.3, 0.3, 0.5)
        right_plot.vgrid.line_color = (0.3, 0.3, 0.3, 0.5)
        left_plot.hgrid.line_color = (0.3, 0.3, 0.3, 0.5)
        left_plot.vgrid.line_color = (0.3, 0.3, 0.3, 0.5)

        container = HPlotContainer(spacing=20, padding=50, bgcolor="lightgray")
        container.add(left_plot)
        container.add(right_plot)
        return container
开发者ID:NeuroArchive,项目名称:morphforge,代码行数:28,代码来源:chaco_test1.py

示例5: __init__

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import add [as 别名]
    def __init__(self):
        # Create the data and the PlotData object
        x = linspace(-14, 14, 100)
        y = sin(x) * x**3
        plotdata = ArrayPlotData(x = x, y = y)

        # Create a scatter plot
        scatter_plot = Plot(plotdata)
        scatter_plot.plot(("x", "y"), type="scatter", color="blue")

        # Create a line plot
        line_plot1 = Plot(plotdata)
        line_plot1.plot(("x", "y"), type="line", color="blue")
        line_plot2 = Plot(plotdata)
        line_plot2.plot(("x", "y"), type="line", color="red")

        # Create a vertical container containing two horizontal containers
        h_container1 = HPlotContainer()
        h_container2 = HPlotContainer()
        outer_container = VPlotContainer(h_container1, h_container2,
                                         stack_order="top_to_bottom")

        # Add the two plots to the first container
        h_container1.add(scatter_plot, line_plot1, line_plot2)

        # Now add the first line plot to the second container => it is removed
        # from the first, as each plot can only have one container
        h_container2.add(line_plot1)

        self.plot = outer_container
开发者ID:5n1p,项目名称:chaco,代码行数:32,代码来源:h_plot_container_add_multiple_times.py

示例6: _create_plot_component

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import add [as 别名]
def _create_plot_component():

    # Create some x-y data series to plot
    x = linspace(-2.0, 10.0, 40)
    pd = ArrayPlotData(index = x, y0=jn(0,x))

    # Create some line plots of some of the data
    plot1 = Plot(pd, title="render_style = hold", padding=50, border_visible=True,
                 overlay_border = True)
    plot1.legend.visible = True
    lineplot = plot1.plot(("index", "y0"), name="j_0", color="red", render_style="hold")

    # Attach some tools to the plot
    attach_tools(plot1)

    # Create a second scatter plot of one of the datasets, linking its
    # range to the first plot
    plot2 = Plot(pd, range2d=plot1.range2d, title="render_style = connectedhold",
                 padding=50, border_visible=True, overlay_border=True)
    plot2.plot(('index', 'y0'), color="blue", render_style="connectedhold")
    attach_tools(plot2)

    # Create a container and add our plots
    container = HPlotContainer()
    container.add(plot1)
    container.add(plot2)
    return container
开发者ID:5n1p,项目名称:chaco,代码行数:29,代码来源:line_plot_hold.py

示例7: _plot_default

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import add [as 别名]
  def _plot_default(self):
    plot = Plot(self.plotdata)
    plot.title = "Simplex on the Rosenbrock function"

    plot.img_plot("background",
                  name="background",
                  xbounds=(0,1.5),
                  ybounds=(0,1.5),
                  colormap=jet(DataRange1D(low=0,high=100)),
                  )

    plot.plot(("values_x", "values_y"), type="scatter", color="red")

    background = plot.plots["background"][0]

    colormap = background.color_mapper
    colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range),
                        color_mapper=colormap,
                        plot=background,
                        orientation='v',
                        resizable='v',
                        width=30,
                        padding=20)
    colorbar.padding_top = plot.padding_top
    colorbar.padding_bottom = plot.padding_bottom

    container = HPlotContainer(use_backbuffer = True)
    container.add(plot)
    container.add(colorbar)
    container.bgcolor = "lightgray"
    return container
开发者ID:cdsj,项目名称:scikit-optimization-tutorials,代码行数:33,代码来源:tutorial_simplex.py

示例8: _create_plot_component

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import add [as 别名]
    def _create_plot_component(self):
        
        selected = Event()
    
        # Create some x-y data series to plot
        x = linspace(-2.0, 10.0, 100)
        pd = ArrayPlotData(index = x)
        for i in range(5):
            pd.set_data("y" + str(i), jn(i,x))
    
        # Create some line plots of some of the data
        plot1 = Plot(pd, title="Line Plot", padding=50, border_visible=True)
        plot1.legend.visible = True
        plot1.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="red")
    
        # Attach some tools to the plot
        plot1.tools.append(PanTool(plot1))
        
        self.zoom = BetterSelectingZoom(component=plot1, tool_mode="box", always_on=False, selection_completed = selected)
        plot1.overlays.append(self.zoom)

        container = HPlotContainer()
        container.add(plot1)
        
        self.zoom.on_trait_change(self.selection_changed, 'ratio')
    
        return container
开发者ID:mlange806,项目名称:pyxda,代码行数:29,代码来源:line_plot1.py

示例9: control

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import add [as 别名]
	def control(self):
		"""
		A drawable control with a color bar.
		"""

		color_map = self.plot_obj.color_mapper
		linear_mapper = LinearMapper(range=color_map.range)
		color_bar = ColorBar(index_mapper=linear_mapper, color_mapper=color_map, plot=self.plot_obj,
				orientation='v', resizable='v', width=30)
		color_bar._axis.tick_label_formatter = self.sci_formatter
		color_bar.padding_top = self.padding_top
		color_bar.padding_bottom = self.padding_bottom
		color_bar.padding_left = 50 # Room for labels.
		color_bar.padding_right = 10

		range_selection = RangeSelection(component=color_bar)
		range_selection.listeners.append(self.plot_obj)
		color_bar.tools.append(range_selection)

		range_selection_overlay = RangeSelectionOverlay(component=color_bar)
		color_bar.overlays.append(range_selection_overlay)

		container = HPlotContainer(use_backbuffer=True)
		container.add(self)
		container.add(color_bar)

		return Window(self.parent, component=container).control
开发者ID:0,项目名称:SpanishAcquisition,代码行数:29,代码来源:colormapped.py

示例10: _create_plot_component

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import add [as 别名]
def _create_plot_component(obj):
    # Setup the spectrum plot
    frequencies = linspace(0.0, float(SAMPLING_RATE)/2, num=NUM_SAMPLES/2)
    obj.spectrum_data = ArrayPlotData(frequency=frequencies)
    empty_amplitude = zeros(NUM_SAMPLES/2)
    obj.spectrum_data.set_data('amplitude', empty_amplitude)

    obj.spectrum_plot = Plot(obj.spectrum_data)
    spec_renderer = obj.spectrum_plot.plot(("frequency", "amplitude"), name="Spectrum",
                           color="red")[0]
    obj.spectrum_plot.padding = 50
    obj.spectrum_plot.title = "Spectrum"
    spec_range = list(obj.spectrum_plot.plots.values())[0][0].value_mapper.range
    spec_range.low = 0.0
    spec_range.high = 5.0
    obj.spectrum_plot.index_axis.title = 'Frequency (hz)'
    obj.spectrum_plot.value_axis.title = 'Amplitude'

    # Time Series plot
    times = linspace(0.0, float(NUM_SAMPLES)/SAMPLING_RATE, num=NUM_SAMPLES)
    obj.time_data = ArrayPlotData(time=times)
    empty_amplitude = zeros(NUM_SAMPLES)
    obj.time_data.set_data('amplitude', empty_amplitude)

    obj.time_plot = Plot(obj.time_data)
    obj.time_plot.plot(("time", "amplitude"), name="Time", color="blue")
    obj.time_plot.padding = 50
    obj.time_plot.title = "Time"
    obj.time_plot.index_axis.title = 'Time (seconds)'
    obj.time_plot.value_axis.title = 'Amplitude'
    time_range = list(obj.time_plot.plots.values())[0][0].value_mapper.range
    time_range.low = -0.2
    time_range.high = 0.2

    # Spectrogram plot
    values = [zeros(NUM_SAMPLES/2) for i in range(SPECTROGRAM_LENGTH)]
    p = WaterfallRenderer(index = spec_renderer.index, values = values,
            index_mapper = LinearMapper(range = obj.spectrum_plot.index_mapper.range),
            value_mapper = LinearMapper(range = DataRange1D(low=0, high=SPECTROGRAM_LENGTH)),
            y2_mapper = LinearMapper(low_pos=0, high_pos=8,
                            range=DataRange1D(low=0, high=15)),
            )
    spectrogram_plot = p
    obj.spectrogram_plot = p
    dummy = Plot()
    dummy.padding = 50
    dummy.index_axis.mapper.range = p.index_mapper.range
    dummy.index_axis.title = "Frequency (hz)"
    dummy.add(p)

    container = HPlotContainer()
    container.add(obj.spectrum_plot)
    container.add(obj.time_plot)

    c2 = VPlotContainer()
    c2.add(dummy)
    c2.add(container)

    return c2
开发者ID:enthought,项目名称:chaco,代码行数:61,代码来源:spec_waterfall.py

示例11: _create_plot_component

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import add [as 别名]
def _create_plot_component():

    # Create some data
    numpts = 1000
    x = sort(random(numpts))
    y = random(numpts)
    color = exp(-(x**2 + y**2))

    # Create a plot data obect and give it this data
    pd = ArrayPlotData()
    pd.set_data("index", x)
    pd.set_data("value", y)
    pd.set_data("color", color)

    # Create the plot
    plot = Plot(pd)
    plot.plot(("index", "value", "color"),
              type="cmap_scatter",
              name="my_plot",
              color_mapper=jet,
              marker = "square",
              fill_alpha = 0.5,
              marker_size = 6,
              outline_color = "black",
              border_visible = True,
              bgcolor = "white")

    # Tweak some of the plot properties
    plot.title = "Colormapped Scatter Plot"
    plot.padding = 50
    plot.x_grid.visible = False
    plot.y_grid.visible = False
    plot.x_axis.font = "modern 16"
    plot.y_axis.font = "modern 16"

    # Right now, some of the tools are a little invasive, and we need the
    # actual ColomappedScatterPlot object to give to them
    cmap_renderer = plot.plots["my_plot"][0]

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot, constrain_key="shift"))
    zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
    plot.overlays.append(zoom)
    selection = ColormappedSelectionOverlay(cmap_renderer, fade_alpha=0.35,
                                            selection_type="mask")
    cmap_renderer.overlays.append(selection)

    # Create the colorbar, handing in the appropriate range and colormap
    colorbar = create_colorbar(plot.color_mapper)
    colorbar.plot = cmap_renderer
    colorbar.padding_top = plot.padding_top
    colorbar.padding_bottom = plot.padding_bottom

    # Create a container to position the plot and the colorbar side-by-side
    container = HPlotContainer(use_backbuffer = True)
    container.add(plot)
    container.add(colorbar)
    container.bgcolor = "lightgray"
    return container
开发者ID:BenChristenson,项目名称:chaco,代码行数:61,代码来源:cmap_scatter.py

示例12: _create_plot_component

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import add [as 别名]
def _create_plot_component():
    # Load state data
    states = pandas.read_csv('states.csv')
    lon = (states['longitude'] + 180.) / 360.
    lat = numpy.radians(states['latitude'])
    lat = (1 - (1. - numpy.log(numpy.tan(lat) +
                               (1./numpy.cos(lat)))/numpy.pi)/2.0)

    populations = pandas.read_csv('state_populations.csv')
    data = populations['2010']
    lon = lon.view(numpy.ndarray)
    lat = lat.view(numpy.ndarray)
    data = data.view(numpy.ndarray)

    plot = Plot(ArrayPlotData(index = lon, value=lat, color=data))
    renderers = plot.plot(("index", "value", "color"),
              type = "cmap_scatter",
              name = "unfunded",
              color_mapper = OrRd,
              marker = "circle",
              outline_color = 'lightgray',
              line_width = 1.,
              marker_size = 10,
              )

    tile_cache = MBTileManager(filename = './map.mbtiles',
                               min_level = 2,
                               max_level = 4)
    # Need a better way add the overlays
    cmap = renderers[0]

    map = Map(cmap, tile_cache=tile_cache, zoom_level=3)
    cmap.underlays.append(map)
    
    plot.title = "2010 Population"
    plot.tools.append(PanTool(plot))
    plot.tools.append(ZoomTool(plot))

    plot.index_axis.title = "Longitude"
    plot.index_axis.tick_label_formatter = convert_lon
    plot.value_axis.title = "Latitude"
    plot.value_axis.tick_label_formatter = convert_lat

    cmap.overlays.append(
            ColormappedSelectionOverlay(cmap, fade_alpha=0.35,
                          selection_type="mask"))

    colorbar = create_colorbar(plot.color_mapper)
    colorbar.plot = cmap
    colorbar.padding_top = plot.padding_top
    colorbar.padding_bottom = plot.padding_bottom
    
    container = HPlotContainer(use_backbuffer = True)
    container.add(plot)
    container.add(colorbar)
    container.bgcolor = "lightgray"

    return container
开发者ID:bgrant,项目名称:enable-mapping,代码行数:60,代码来源:chaco_map.py

示例13: test_valign

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import add [as 别名]
 def test_valign(self):
     container = HPlotContainer(bounds=[300,200], valign="center")
     comp1 = StaticPlotComponent([200,100])
     container.add(comp1)
     container.do_layout()
     self.assertEqual(comp1.position, [0,50])
     container.valign="top"
     container.do_layout(force=True)
     self.assertEqual(comp1.position, [0,100])
     return
开发者ID:enthought,项目名称:chaco,代码行数:12,代码来源:plotcontainer_test_case.py

示例14: _create_plot_component

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import add [as 别名]
def _create_plot_component(max_pop, index_ds, value_ds, color_ds, paths):

    tile_cache = HTTPTileManager(min_level=2, max_level=4,
                                 server='tile.cloudmade.com',
                                 url='/1a1b06b230af4efdbb989ea99e9841af/20760/256/%(zoom)d/%(col)d/%(row)d.png')  # noqa

    color_range = DataRange1D(color_ds, low_setting=0)

    choro = ChoroplethPlot(
              index=index_ds,
              value=value_ds,
              color_data=color_ds,
              index_mapper=LinearMapper(range=DataRange1D(index_ds)),
              value_mapper=LinearMapper(range=DataRange1D(value_ds)),
              color_mapper=colormap(range=color_range),
              outline_color='white',
              line_width=1.5,
              fill_alpha=1.,
              compiled_paths=paths,

              tile_cache=tile_cache,
              zoom_level=3,
              )

    container = OverlayPlotContainer(
        bgcolor='sys_window', padding=50, fill_padding=False,
        border_visible=True,
    )
    container.add(choro)

    for dir in ['left']:
        axis = PlotAxis(tick_label_formatter=convert_lat,
                        mapper=choro.value_mapper, component=container,
                        orientation=dir)
        container.overlays.append(axis)
    for dir in ['top', 'bottom']:
        axis = PlotAxis(tick_label_formatter=convert_lon,
                        mapper=choro.index_mapper, component=container,
                        orientation=dir)
        container.overlays.append(axis)

    choro.tools.append(PanTool(choro))
    choro.tools.append(ZoomTool(choro))

    colorbar = create_colorbar(choro)
    colorbar.padding_top = container.padding_top
    colorbar.padding_bottom = container.padding_bottom

    plt = HPlotContainer(use_backbuffer=True)
    plt.add(container)
    plt.add(colorbar)
    plt.bgcolor = "sys_window"

    return plt
开发者ID:enthought,项目名称:enable-mapping,代码行数:56,代码来源:choropleth.py

示例15: _create_plot_component

# 需要导入模块: from chaco.api import HPlotContainer [as 别名]
# 或者: from chaco.api.HPlotContainer import add [as 别名]
def _create_plot_component():

    # Create some x-y data series to plot
    plot_area = OverlayPlotContainer(border_visible=True)
    container = HPlotContainer(padding=50, bgcolor="transparent")
    #container.spacing = 15

    x = linspace(-2.0, 10.0, 100)
    for i in range(5):
        color = tuple(COLOR_PALETTE[i])
        y = jn(i, x)
        renderer = create_line_plot((x, y), color=color)
        plot_area.add(renderer)
        #plot_area.padding_left = 20

        axis = PlotAxis(orientation="left", resizable="v",
                    mapper = renderer.y_mapper,
                    axis_line_color=color,
                    tick_color=color,
                    tick_label_color=color,
                    title_color=color,
                    bgcolor="transparent",
                    title = "jn_%d" % i,
                    border_visible = True,)
        axis.bounds = [60,0]
        axis.padding_left = 10
        axis.padding_right = 10

        container.add(axis)

        if i == 4:
            # Use the last plot's X mapper to create an X axis and a
            # vertical grid
            x_axis = PlotAxis(orientation="bottom", component=renderer,
                        mapper=renderer.x_mapper)
            renderer.overlays.append(x_axis)
            grid = PlotGrid(mapper=renderer.x_mapper, orientation="vertical",
                    line_color="lightgray", line_style="dot")
            renderer.underlays.append(grid)

    # Add the plot_area to the horizontal container
    container.add(plot_area)

    # Attach some tools to the plot
    broadcaster = BroadcasterTool()
    for plot in plot_area.components:
        broadcaster.tools.append(PanTool(plot))

    # Attach the broadcaster to one of the plots.  The choice of which
    # plot doesn't really matter, as long as one of them has a reference
    # to the tool and will hand events to it.
    plot.tools.append(broadcaster)

    return container
开发者ID:5n1p,项目名称:chaco,代码行数:56,代码来源:stacked_axis.py


注:本文中的chaco.api.HPlotContainer.add方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。