当前位置: 首页>>代码示例>>Python>>正文


Python CatBoostClassifier.save_model方法代码示例

本文整理汇总了Python中catboost.CatBoostClassifier.save_model方法的典型用法代码示例。如果您正苦于以下问题:Python CatBoostClassifier.save_model方法的具体用法?Python CatBoostClassifier.save_model怎么用?Python CatBoostClassifier.save_model使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在catboost.CatBoostClassifier的用法示例。


在下文中一共展示了CatBoostClassifier.save_model方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train_preprocessor

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import save_model [as 别名]
def train_preprocessor(path='.', train='train.csv'):
    print('start train trash preprocessor...')
    df = pd.read_csv(os.path.join(path, train))

    train_data = df[:-100]
    validation_data = df[-100: -50]

    vectorizer = CountVectorizer()
    x_train_counts = vectorizer.fit_transform(train_data.text)
    x_validation_counts = vectorizer.transform(validation_data.text)

    model = CatBoostClassifier(iterations=250,
                               train_dir=path,
                               logging_level='Silent',
                               allow_writing_files=False
                               )

    model.fit(X=x_train_counts.toarray(),
              y=train_data.status,
              eval_set=(x_validation_counts.toarray(), validation_data.status),
              use_best_model=True,)

    model.save_model(os.path.join(path, 'trash_model'))
    joblib.dump(vectorizer,os.path.join(path, 'trash_vectorizer'))
    print('end train sentiment preprocessor...')
开发者ID:AnastasiaProk,项目名称:ws2018_forum_analyzer,代码行数:27,代码来源:trash_preprocessing.py

示例2: test_full_history

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import save_model [as 别名]
def test_full_history():
    train_pool = Pool(TRAIN_FILE, column_description=CD_FILE)
    test_pool = Pool(TEST_FILE, column_description=CD_FILE)
    model = CatBoostClassifier(od_type='Iter', od_wait=20, random_seed=42, approx_on_full_history=True)
    model.fit(train_pool, eval_set=test_pool)
    model.save_model(OUTPUT_MODEL_PATH)
    return compare_canonical_models(OUTPUT_MODEL_PATH)
开发者ID:iamnik13,项目名称:catboost,代码行数:9,代码来源:test.py

示例3: test_non_ones_weight

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import save_model [as 别名]
def test_non_ones_weight():
    pool = Pool(TRAIN_FILE, column_description=CD_FILE)
    weight = np.arange(1, pool.num_row()+1)
    pool.set_weight(weight)
    model = CatBoostClassifier(iterations=2, random_seed=0)
    model.fit(pool)
    model.save_model(OUTPUT_MODEL_PATH)
    return compare_canonical_models(OUTPUT_MODEL_PATH)
开发者ID:iamnik13,项目名称:catboost,代码行数:10,代码来源:test.py

示例4: test_zero_baseline

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import save_model [as 别名]
def test_zero_baseline():
    pool = Pool(TRAIN_FILE, column_description=CD_FILE)
    baseline = np.zeros(pool.num_row())
    pool.set_baseline(baseline)
    model = CatBoostClassifier(iterations=2, random_seed=0)
    model.fit(pool)
    model.save_model(OUTPUT_MODEL_PATH)
    return compare_canonical_models(OUTPUT_MODEL_PATH)
开发者ID:iamnik13,项目名称:catboost,代码行数:10,代码来源:test.py

示例5: test_multiclass

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import save_model [as 别名]
def test_multiclass():
    pool = Pool(CLOUDNESS_TRAIN_FILE, column_description=CLOUDNESS_CD_FILE)
    classifier = CatBoostClassifier(iterations=2, random_seed=0, loss_function='MultiClass', thread_count=8)
    classifier.fit(pool)
    classifier.save_model(OUTPUT_MODEL_PATH)
    new_classifier = CatBoostClassifier()
    new_classifier.load_model(OUTPUT_MODEL_PATH)
    pred = new_classifier.predict_proba(pool)
    np.save(PREDS_PATH, np.array(pred))
    return local_canonical_file(PREDS_PATH)
开发者ID:iamnik13,项目名称:catboost,代码行数:12,代码来源:test.py

示例6: test_ignored_features

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import save_model [as 别名]
def test_ignored_features():
    train_pool = Pool(TRAIN_FILE, column_description=CD_FILE)
    test_pool = Pool(TEST_FILE, column_description=CD_FILE)
    model1 = CatBoostClassifier(iterations=5, random_seed=0, ignored_features=[1, 2, 3])
    model2 = CatBoostClassifier(iterations=5, random_seed=0)
    model1.fit(train_pool)
    model2.fit(train_pool)
    predictions1 = model1.predict(test_pool)
    predictions2 = model2.predict(test_pool)
    assert not _check_data(predictions1, predictions2)
    model1.save_model(OUTPUT_MODEL_PATH)
    return compare_canonical_models(OUTPUT_MODEL_PATH)
开发者ID:iamnik13,项目名称:catboost,代码行数:14,代码来源:test.py

示例7: test_fit_data

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import save_model [as 别名]
def test_fit_data():
    pool = Pool(CLOUDNESS_TRAIN_FILE, column_description=CLOUDNESS_CD_FILE)
    eval_pool = Pool(CLOUDNESS_TEST_FILE, column_description=CLOUDNESS_CD_FILE)
    base_model = CatBoostClassifier(iterations=2, random_seed=0, loss_function="MultiClass")
    base_model.fit(pool)
    baseline = np.array(base_model.predict(pool, prediction_type='RawFormulaVal'))
    eval_baseline = np.array(base_model.predict(eval_pool, prediction_type='RawFormulaVal'))
    eval_pool.set_baseline(eval_baseline)
    model = CatBoostClassifier(iterations=2, random_seed=0, loss_function="MultiClass")
    data = map_cat_features(pool.get_features(), pool.get_cat_feature_indices())
    model.fit(data, pool.get_label(), pool.get_cat_feature_indices(), sample_weight=np.arange(1, pool.num_row()+1), baseline=baseline, use_best_model=True, eval_set=eval_pool)
    model.save_model(OUTPUT_MODEL_PATH)
    return compare_canonical_models(OUTPUT_MODEL_PATH)
开发者ID:iamnik13,项目名称:catboost,代码行数:15,代码来源:test.py

示例8: test_classification_ctr

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import save_model [as 别名]
def test_classification_ctr():
    pool = Pool(TRAIN_FILE, column_description=CD_FILE)
    model = CatBoostClassifier(iterations=5, random_seed=0, ctr_description=['Borders', 'Counter'])
    model.fit(pool)
    model.save_model(OUTPUT_MODEL_PATH)
    return compare_canonical_models(OUTPUT_MODEL_PATH)
开发者ID:iamnik13,项目名称:catboost,代码行数:8,代码来源:test.py

示例9: test_class_weights

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import save_model [as 别名]
def test_class_weights():
    pool = Pool(TRAIN_FILE, column_description=CD_FILE)
    model = CatBoostClassifier(iterations=5, random_seed=0, class_weights=[1, 2])
    model.fit(pool)
    model.save_model(OUTPUT_MODEL_PATH)
    return compare_canonical_models(OUTPUT_MODEL_PATH)
开发者ID:iamnik13,项目名称:catboost,代码行数:8,代码来源:test.py

示例10: test_priors

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import save_model [as 别名]
def test_priors():
    pool = Pool(TRAIN_FILE, column_description=CD_FILE)
    model = CatBoostClassifier(iterations=5, random_seed=0, has_time=True, ctr_description=["Borders:Prior=0:Prior=0.6:Prior=1:Prior=5", "Counter:Prior=0:Prior=0.6:Prior=1:Prior=5"])
    model.fit(pool)
    model.save_model(OUTPUT_MODEL_PATH)
    return compare_canonical_models(OUTPUT_MODEL_PATH)
开发者ID:iamnik13,项目名称:catboost,代码行数:8,代码来源:test.py

示例11: test_predict_sklearn_class

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import save_model [as 别名]
def test_predict_sklearn_class():
    train_pool = Pool(TRAIN_FILE, column_description=CD_FILE)
    model = CatBoostClassifier(iterations=2, random_seed=0)
    model.fit(train_pool)
    model.save_model(OUTPUT_MODEL_PATH)
    return compare_canonical_models(OUTPUT_MODEL_PATH)
开发者ID:iamnik13,项目名称:catboost,代码行数:8,代码来源:test.py


注:本文中的catboost.CatBoostClassifier.save_model方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。