本文整理汇总了Python中catboost.CatBoostClassifier.predict_proba方法的典型用法代码示例。如果您正苦于以下问题:Python CatBoostClassifier.predict_proba方法的具体用法?Python CatBoostClassifier.predict_proba怎么用?Python CatBoostClassifier.predict_proba使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类catboost.CatBoostClassifier
的用法示例。
在下文中一共展示了CatBoostClassifier.predict_proba方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_model
# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import predict_proba [as 别名]
def create_model(self, kfold_X_train, y_train, kfold_X_valid, y_test, test):
best = CatBoostClassifier(loss_function='MultiClassOneVsAll', learning_rate=0.07940735491731761, depth=8)
best.fit(kfold_X_train, y_train)
# 对验证集predict
pred = best.predict_proba(kfold_X_valid)
results = best.predict_proba(test)
return pred, results, best
示例2: cleaning_comments
# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import predict_proba [as 别名]
def cleaning_comments(raw_comments, path='.') -> str:
print('start cleaning of comments...')
raw = pd.read_csv(raw_comments)
cleaned_comments = os.path.join(path, 'cleaned_comments.csv')
bad_comments = os.path.join(path, 'bad_comments.csv')
model = CatBoostClassifier().load_model(os.path.join(path, 'trash_model'))
vectorizer = joblib.load(os.path.join(path, 'trash_vectorizer'))
hyp = model.predict_proba(vectorizer.transform(raw.text).toarray())
with open(cleaned_comments, 'w') as cleaned, open(bad_comments, 'w') as bad:
bad_file = 'likes,status,text\n'
cleaned_file = 'likes,status,text\n'
for i in range(len(hyp)):
if hyp[i][0] < 0.6:
bad_file += str(raw.likes[i]) + ',1,"' + raw.text[i] + '"\n'
else:
cleaned_file += str(raw.likes[i]) + ',0,"' + raw.text[i] + '"\n'
cleaned.write(cleaned_file)
bad.write(bad_file)
os.remove(raw_comments)
print('end cleaning of comments...')
return cleaned_comments
示例3: test_ntree_limit
# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import predict_proba [as 别名]
def test_ntree_limit():
train_pool = Pool(TRAIN_FILE, column_description=CD_FILE)
test_pool = Pool(TEST_FILE, column_description=CD_FILE)
model = CatBoostClassifier(iterations=100, random_seed=0)
model.fit(train_pool)
pred = model.predict_proba(test_pool, ntree_end=10)
np.save(PREDS_PATH, np.array(pred))
return local_canonical_file(PREDS_PATH)
示例4: test_multiclass
# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import predict_proba [as 别名]
def test_multiclass():
pool = Pool(CLOUDNESS_TRAIN_FILE, column_description=CLOUDNESS_CD_FILE)
classifier = CatBoostClassifier(iterations=2, random_seed=0, loss_function='MultiClass', thread_count=8)
classifier.fit(pool)
classifier.save_model(OUTPUT_MODEL_PATH)
new_classifier = CatBoostClassifier()
new_classifier.load_model(OUTPUT_MODEL_PATH)
pred = new_classifier.predict_proba(pool)
np.save(PREDS_PATH, np.array(pred))
return local_canonical_file(PREDS_PATH)
示例5: model_1
# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import predict_proba [as 别名]
def model_1(X,y,test):
'''
This is a catBoost model where we need not to encode categorical variables.
It automatically takes care of them.
'''
categorical_features_indices = np.where(X.dtypes != np.float)[0]
X_train, X_validation, y_train, y_validation = train_test_split(X, y, train_size=0.7, random_state=1234)
#importing library and building model
cboost=CatBoostClassifier(iterations=500,learning=0.01,depth=6,loss_function='MultiClass',eval_metric='Accuracy')
cboost.fit(X_train, y_train,cat_features=categorical_features_indices,eval_set=(X_validation, y_validation),plot=True)
#calculating the class wise prediction probability of cboost model
pred_prob=cboost.predict_proba(test)
return pred_prob
示例6: __init__
# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import predict_proba [as 别名]
class BesCatBoost:
"""
catboost_params = {
'iterations': 500,
'depth': 3,
'learning_rate': 0.1,
'eval_metric': 'AUC',
'random_seed': 42,
'logging_level': 'Verbose',
'l2_leaf_reg': 15.0,
'bagging_temperature': 0.75,
'allow_writing_files': False,
'metric_period': 50
}
"""
def __init__(self, params, metric='AUC', maximize=True, verbose=True, model=None):
self.params = params
self.metric = metric
self.maximize = maximize
self.verbose = verbose
self.model = model
def fit(self, X_train, y_train):
bst = cv(
Pool(X_train, y_train),
self.params
)
best_rounds = int(bst['test-{}-mean'.format(self.metric)].idxmax() * 1.5) + 1
print('Best Iteration: {}'.format(best_rounds))
self.params['iterations'] = best_rounds
self.model = CatBoostClassifier(**self.params)
self.model.fit(
X_train, y_train
)
def predict(self, X_test):
pred_prob = self.model.predict_proba(X_test)[:, -1]
return pred_prob
def feature_importance(self):
pass
@staticmethod
def find_best_params(kag):
pass