当前位置: 首页>>代码示例>>Python>>正文


Python CatBoostClassifier.predict方法代码示例

本文整理汇总了Python中catboost.CatBoostClassifier.predict方法的典型用法代码示例。如果您正苦于以下问题:Python CatBoostClassifier.predict方法的具体用法?Python CatBoostClassifier.predict怎么用?Python CatBoostClassifier.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在catboost.CatBoostClassifier的用法示例。


在下文中一共展示了CatBoostClassifier.predict方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_wrong_feature_count

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import predict [as 别名]
def test_wrong_feature_count():
    with pytest.raises(CatboostError):
        data = np.random.rand(100, 10)
        label = np.random.randint(2, size=100)
        model = CatBoostClassifier()
        model.fit(data, label)
        model.predict(data[:, :-1])
开发者ID:iamnik13,项目名称:catboost,代码行数:9,代码来源:test.py

示例2: test_no_cat_in_predict

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import predict [as 别名]
def test_no_cat_in_predict():
    train_pool = Pool(TRAIN_FILE, column_description=CD_FILE)
    test_pool = Pool(TEST_FILE, column_description=CD_FILE)
    model = CatBoostClassifier(iterations=2, random_seed=0)
    model.fit(train_pool)
    pred1 = model.predict(map_cat_features(test_pool.get_features(), train_pool.get_cat_feature_indices()))
    pred2 = model.predict(Pool(map_cat_features(test_pool.get_features(), train_pool.get_cat_feature_indices()), cat_features=train_pool.get_cat_feature_indices()))
    assert _check_data(pred1, pred2)
开发者ID:iamnik13,项目名称:catboost,代码行数:10,代码来源:test.py

示例3: test_ignored_features

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import predict [as 别名]
def test_ignored_features():
    train_pool = Pool(TRAIN_FILE, column_description=CD_FILE)
    test_pool = Pool(TEST_FILE, column_description=CD_FILE)
    model1 = CatBoostClassifier(iterations=5, random_seed=0, ignored_features=[1, 2, 3])
    model2 = CatBoostClassifier(iterations=5, random_seed=0)
    model1.fit(train_pool)
    model2.fit(train_pool)
    predictions1 = model1.predict(test_pool)
    predictions2 = model2.predict(test_pool)
    assert not _check_data(predictions1, predictions2)
    model1.save_model(OUTPUT_MODEL_PATH)
    return compare_canonical_models(OUTPUT_MODEL_PATH)
开发者ID:iamnik13,项目名称:catboost,代码行数:14,代码来源:test.py

示例4: test_fit_data

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import predict [as 别名]
def test_fit_data():
    pool = Pool(CLOUDNESS_TRAIN_FILE, column_description=CLOUDNESS_CD_FILE)
    eval_pool = Pool(CLOUDNESS_TEST_FILE, column_description=CLOUDNESS_CD_FILE)
    base_model = CatBoostClassifier(iterations=2, random_seed=0, loss_function="MultiClass")
    base_model.fit(pool)
    baseline = np.array(base_model.predict(pool, prediction_type='RawFormulaVal'))
    eval_baseline = np.array(base_model.predict(eval_pool, prediction_type='RawFormulaVal'))
    eval_pool.set_baseline(eval_baseline)
    model = CatBoostClassifier(iterations=2, random_seed=0, loss_function="MultiClass")
    data = map_cat_features(pool.get_features(), pool.get_cat_feature_indices())
    model.fit(data, pool.get_label(), pool.get_cat_feature_indices(), sample_weight=np.arange(1, pool.num_row()+1), baseline=baseline, use_best_model=True, eval_set=eval_pool)
    model.save_model(OUTPUT_MODEL_PATH)
    return compare_canonical_models(OUTPUT_MODEL_PATH)
开发者ID:iamnik13,项目名称:catboost,代码行数:15,代码来源:test.py

示例5: test_raw_predict_equals_to_model_predict

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import predict [as 别名]
def test_raw_predict_equals_to_model_predict():
    train_pool = Pool(TRAIN_FILE, column_description=CD_FILE)
    test_pool = Pool(TEST_FILE, column_description=CD_FILE)
    model = CatBoostClassifier(iterations=10, random_seed=0)
    model.fit(train_pool, eval_set=test_pool)
    pred = model.predict(test_pool, prediction_type='RawFormulaVal')
    assert all(model.get_test_eval() == pred)
开发者ID:Xiaodingdangguaiguai,项目名称:catboost,代码行数:9,代码来源:test.py

示例6: test_predict_class

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import predict [as 别名]
def test_predict_class():
    train_pool = Pool(TRAIN_FILE, column_description=CD_FILE)
    test_pool = Pool(TEST_FILE, column_description=CD_FILE)
    model = CatBoostClassifier(iterations=2, random_seed=0)
    model.fit(train_pool)
    pred = model.predict(test_pool, prediction_type="Class")
    np.save(PREDS_PATH, np.array(pred))
    return local_canonical_file(PREDS_PATH)
开发者ID:iamnik13,项目名称:catboost,代码行数:10,代码来源:test.py

示例7: test_custom_objective

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import predict [as 别名]
def test_custom_objective():
    class LoglossObjective(object):
        def calc_ders_range(self, approxes, targets, weights):
            assert len(approxes) == len(targets)
            if weights is not None:
                assert len(weights) == len(approxes)

            exponents = []
            for index in xrange(len(approxes)):
                exponents.append(math.exp(approxes[index]))

            result = []
            for index in xrange(len(targets)):
                p = exponents[index] / (1 + exponents[index])
                der1 = (1 - p) if targets[index] > 0.0 else -p
                der2 = -p * (1 - p)

                if weights is not None:
                    der1 *= weights[index]
                    der2 *= weights[index]

                result.append((der1, der2))

            return result

    train_pool = Pool(data=TRAIN_FILE, column_description=CD_FILE)
    test_pool = Pool(data=TEST_FILE, column_description=CD_FILE)

    model = CatBoostClassifier(iterations=5, random_seed=0, use_best_model=True,
                               loss_function=LoglossObjective(), eval_metric="Logloss",
                               # Leaf estimation method and gradient iteration are set to match
                               # defaults for Logloss.
                               leaf_estimation_method="Newton", leaf_estimation_iterations=10)
    model.fit(train_pool, eval_set=test_pool)
    pred1 = model.predict(test_pool, prediction_type='RawFormulaVal')

    model2 = CatBoostClassifier(iterations=5, random_seed=0, use_best_model=True, loss_function="Logloss")
    model2.fit(train_pool, eval_set=test_pool)
    pred2 = model2.predict(test_pool, prediction_type='RawFormulaVal')

    for p1, p2 in zip(pred1, pred2):
        assert abs(p1 - p2) < EPS
开发者ID:iamnik13,项目名称:catboost,代码行数:44,代码来源:test.py

示例8: test_custom_eval

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import predict [as 别名]
def test_custom_eval():
    class LoglossMetric(object):
        def get_final_error(self, error, weight):
            return error / (weight + 1e-38)

        def is_max_optimal(self):
            return True

        def evaluate(self, approxes, target, weight):
            assert len(approxes) == 1
            assert len(target) == len(approxes[0])

            approx = approxes[0]

            error_sum = 0.0
            weight_sum = 0.0

            for i in xrange(len(approx)):
                w = 1.0 if weight is None else weight[i]
                weight_sum += w
                error_sum += w * (target[i] * approx[i] - math.log(1 + math.exp(approx[i])))

            return error_sum, weight_sum

    train_pool = Pool(data=TRAIN_FILE, column_description=CD_FILE)
    test_pool = Pool(data=TEST_FILE, column_description=CD_FILE)

    model = CatBoostClassifier(iterations=5, random_seed=0, use_best_model=True, eval_metric=LoglossMetric())
    model.fit(train_pool, eval_set=test_pool)
    pred1 = model.predict(test_pool)

    model2 = CatBoostClassifier(iterations=5, random_seed=0, use_best_model=True, eval_metric="Logloss")
    model2.fit(train_pool, eval_set=test_pool)
    pred2 = model2.predict(test_pool)

    for p1, p2 in zip(pred1, pred2):
        assert abs(p1 - p2) < EPS
开发者ID:iamnik13,项目名称:catboost,代码行数:39,代码来源:test.py

示例9: test_predict_without_fit

# 需要导入模块: from catboost import CatBoostClassifier [as 别名]
# 或者: from catboost.CatBoostClassifier import predict [as 别名]
def test_predict_without_fit():
    with pytest.raises(CatboostError):
        pool = Pool(TRAIN_FILE, column_description=CD_FILE)
        model = CatBoostClassifier()
        model.predict(pool)
开发者ID:iamnik13,项目名称:catboost,代码行数:7,代码来源:test.py


注:本文中的catboost.CatBoostClassifier.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。