本文整理汇总了Python中canoepaddle.Pen.line_to方法的典型用法代码示例。如果您正苦于以下问题:Python Pen.line_to方法的具体用法?Python Pen.line_to怎么用?Python Pen.line_to使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类canoepaddle.Pen
的用法示例。
在下文中一共展示了Pen.line_to方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_join_paths_reference
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import line_to [as 别名]
def test_join_paths_reference():
# Join paths in such a way that a single path object must be
# used as both the "left" and "right" path in different joins.
p = Pen()
p.fill_mode()
p.move_to((3, 0))
p.line_to((2, 0))
p.break_stroke()
p.move_to((1, 0))
p.line_to((0, 0))
p.break_stroke()
p.move_to((4, 0))
p.line_to((3, 0))
p.break_stroke()
p.move_to((1, 0))
p.line_to((2, 0))
p.break_stroke()
p.move_to((4, 0))
p.line_to((5, 0))
p.paper.join_paths()
assert_path_data(
p, 0,
'M5,0 L4,0 L3,0 L2,0 L1,0 L0,0'
)
示例2: test_two_pens_one_paper
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import line_to [as 别名]
def test_two_pens_one_paper():
paper = Paper()
p1 = Pen(paper)
p2 = Pen(paper)
p1.fill_mode()
p2.fill_mode()
p1.move_to((0, 0))
p2.move_to((0, 0))
p1.line_to((0, 1))
p2.line_to((2, 0))
assert_path_data(
paper, 0,
['M0,0 L0,-1', 'M0,0 L2,0']
)
示例3: test_line_segment_bounds
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import line_to [as 别名]
def test_line_segment_bounds():
# Fill mode segment.
p = Pen()
p.fill_mode()
p.move_to((1, 0))
p.line_to((2, 3))
line = p.last_segment()
assert_equal(
line.bounds(),
Bounds(1, 0, 2, 3)
)
# Stroke mode segment.
p = Pen()
p.stroke_mode(sqrt2)
p.move_to((0, 0))
p.line_to((5, 5))
line = p.last_segment()
assert_equal(
line.bounds(),
Bounds(-0.5, -0.5, 5.5, 5.5)
)
示例4: test_join_paths
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import line_to [as 别名]
def test_join_paths():
# Join two paths starting from the same point.
p = Pen()
p.fill_mode()
p.move_to((1, 0))
p.line_to((0, 0))
p.break_stroke()
p.move_to((1, 0))
p.line_to((2, 0))
p.paper.join_paths()
assert_path_data(
p, 0,
'M0,0 L1,0 L2,0',
)
# Join two paths that end in the same point.
p = Pen()
p.fill_mode()
p.move_to((1, 0))
p.line_to((0, 0))
p.break_stroke()
p.move_to((2, 0))
p.line_to((1, 0))
p.paper.join_paths()
assert_path_data(
p, 0,
'M0,0 L1,0 L2,0',
)
# Join three paths going left in normal order.
p = Pen()
p.fill_mode()
p.move_to((3, 0))
p.line_to((2, 0))
p.break_stroke()
p.move_to((2, 0))
p.line_to((1, 0))
p.break_stroke()
p.move_to((1, 0))
p.line_to((0, 0))
p.paper.join_paths()
assert_path_data(
p, 0,
'M3,0 L2,0 L1,0 L0,0',
)
# Join three paths going right in normal order.
p = Pen()
p.fill_mode()
p.move_to((0, 0))
p.line_to((1, 0))
p.break_stroke()
p.move_to((1, 0))
p.line_to((2, 0))
p.break_stroke()
p.move_to((2, 0))
p.line_to((3, 0))
p.paper.join_paths()
assert_path_data(
p, 0,
'M0,0 L1,0 L2,0 L3,0',
)
# Join three paths going left in reverse order.
p = Pen()
p.fill_mode()
p.move_to((1, 0))
p.line_to((0, 0))
p.break_stroke()
p.move_to((2, 0))
p.line_to((1, 0))
p.break_stroke()
p.move_to((3, 0))
p.line_to((2, 0))
p.paper.join_paths()
assert_path_data(
p, 0,
'M0,0 L1,0 L2,0 L3,0',
)
# Join three paths going right in reverse order.
p = Pen()
p.fill_mode()
p.move_to((2, 0))
#.........这里部分代码省略.........
示例5: test_join_paths_loop
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import line_to [as 别名]
def test_join_paths_loop():
# Already looped paths should not be affected by join_paths.
p = Pen()
p.fill_mode()
p.move_to((0, 0))
p.square(2)
target = 'M-1,1 L1,1 L1,-1 L-1,-1 L-1,1 z'
assert_path_data(p, 0, target)
p.paper.join_paths()
assert_path_data(p, 0, target)
# Loops can also be created by joining paths.
p = Pen()
p.fill_mode()
p.move_to((0, 0))
p.line_to((1, 0))
p.line_to((1, 1))
p.break_stroke()
p.line_to((0, 1))
p.line_to((0, 0))
p.paper.join_paths()
assert_path_data(
p, 0,
'M1,-1 L1,0 L0,0 L0,-1 L1,-1 z'
)
# The joins can get complicated.
p = Pen()
p.fill_mode()
p.move_to((3, 0))
p.line_to((2, 0))
p.break_stroke()
p.move_to((1, 0))
p.line_to((2, 2))
p.break_stroke()
p.move_to((4, 0))
p.line_to((3, 0))
p.break_stroke()
p.move_to((1, 0))
p.line_to((2, 0))
p.break_stroke()
p.move_to((4, 0))
p.line_to((2, 2))
p.paper.join_paths()
assert_path_data(
p, 0,
'M1,0 L2,-2 L4,0 L3,0 L2,0 L1,0 z',
)
示例6: Pen
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import line_to [as 别名]
continue
else:
point_occupancy[a] += 1
b = random.choice(points)
if point_occupancy[b] >= 2:
continue
else:
point_occupancy[b] += 1
yield a, b
if __name__ == '__main__':
while True:
p = Pen()
p.stroke_mode(0.01)
for a, b in gen_lines(200, 100):
p.move_to(a)
p.line_to(b)
p.break_stroke()
try:
p.paper.join_paths()
except AssertionError:
print(p.log())
break
else:
print(p.paper.format_svg(6, resolution=1000))
break
示例7: draw
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import line_to [as 别名]
def draw():
p = Pen()
center_radius = 3.0
start_radius = radius = 100
start_width = width = 3.0
ratio = (1 / 2) ** (1/5)
series = []
while radius > center_radius / sqrt2:
series.append((radius, width))
radius *= ratio
width *= ratio
p.move_to((0, 0))
for radius, width in series:
p.stroke_mode(width, 'black')
p.circle(radius)
# Parametric conic spirals.
p.move_to((0, 0))
def spiral(theta):
b = (1 / 2) ** (-2 / math.pi)
r = start_radius * (b ** (-theta))
x = r * math.cos(theta)
y = r * math.sin(theta)
z = start_radius - r
return (x, y, z)
def spiral_top1(t):
x, y, z = spiral(t)
return x, y
def spiral_top2(t):
x, y, z = spiral(t)
x = -x
y = -y
return x, y
# Top spirals.
p.stroke_mode(start_width, 'black')
p.parametric(spiral_top1, 0, 4*math.pi, .1)
p.parametric(spiral_top2, 0, 4*math.pi, .1)
# Blank out the bottom triangle.
p.fill_mode('white')
p.move_to((0, 0))
s = start_radius + start_width
p.line_to((-s, -s))
p.line_to((+s, -s))
p.line_to((0, 0))
# Horizontal lines for the bottom triangle.
for radius, width in series:
p.stroke_mode(width, 'black')
p.move_to((-radius, -radius))
p.line_to(
(+radius, -radius),
start_slant=45,
end_slant=-45,
)
# Front spirals.
def spiral_front1(t):
x, y, z = spiral(t)
return (x, z - start_radius)
def spiral_front2(t):
x, y, z = spiral(t)
x = -x
y = -y
return (x, z - start_radius)
p.move_to((0, 0))
p.stroke_mode(start_width, 'black')
p.parametric(spiral_front1, 0, math.pi, .1)
p.parametric(spiral_front2, math.pi, 2*math.pi, .1)
p.parametric(spiral_front1, 2*math.pi, 3*math.pi, .1)
# Fill in the center.
p.move_to((0, 0))
p.fill_mode('black')
p.circle(center_radius)
return p.paper