本文整理汇总了Python中canoepaddle.Pen.circle方法的典型用法代码示例。如果您正苦于以下问题:Python Pen.circle方法的具体用法?Python Pen.circle怎么用?Python Pen.circle使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类canoepaddle.Pen
的用法示例。
在下文中一共展示了Pen.circle方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_translate
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import circle [as 别名]
def test_translate():
p = Pen()
p.stroke_mode(1.0)
p.move_to((0, 0))
p.turn_to(0)
p.line_forward(3)
p.arc_left(90, 3)
p.turn_left(90)
p.move_forward(3)
p.fill_mode()
p.circle(0.5)
p.move_forward(3)
p.square(1)
p.paper.translate((1, 1))
assert_equal(
p.paper.svg_elements(1),
[
(
'<path d="M1.0,-1.5 L1.0,-0.5 L4.0,-0.5 A 3.5,3.5 0 0 0 '
'7.5,-4.0 L6.5,-4.0 A 2.5,2.5 0 0 1 4.0,-1.5 L1.0,-1.5 z" '
'fill="#000000" />'
),
(
'<path d="M4.5,-4.0 A 0.5,0.5 0 0 0 3.5,-4.0 '
'A 0.5,0.5 0 0 0 4.5,-4.0 z" fill="#000000" />'
),
(
'<path d="M0.5,-3.5 L1.5,-3.5 L1.5,-4.5 L0.5,-4.5 L0.5,-3.5 z" '
'fill="#000000" />'
),
]
)
示例2: test_translate_override_bounds
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import circle [as 别名]
def test_translate_override_bounds():
# Translate a paper that has overridden bounds. The bounds update as well.
paper = Paper()
paper.override_bounds(0, 0, 1, 1)
paper.translate((3, 4))
assert_equal(
paper.bounds(),
Bounds(3, 4, 4, 5)
)
# When bounds=False is passed, then the bounds do not update.
paper = Paper()
paper.override_bounds(0, 0, 1, 1)
paper.translate((3, 4), bounds=False)
assert_equal(paper.bounds(), Bounds(0, 0, 1, 1))
# This also works if the bounds are not overridden.
p = Pen()
p.fill_mode()
p.move_to((0.5, 0.5))
p.circle(0.5)
assert_equal(p.paper.bounds(), Bounds(0, 0, 1, 1))
p.paper.translate((3, 4), bounds=False)
assert_equal(p.paper.bounds(), Bounds(0, 0, 1, 1))
assert_equal(p.last_path().bounds(), Bounds(3, 4, 4, 5))
示例3: test_center_on_xy
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import circle [as 别名]
def test_center_on_xy():
p = Pen()
p.stroke_mode(2.0)
p.move_to((0, 0))
p.turn_to(0)
p.line_forward(4)
p.move_to((2, 1))
p.circle(1)
p.paper.center_on_x(0)
assert_equal(
p.paper.svg_elements(0),
[
'<path d="M-2,-1 L-2,1 L2,1 L2,-1 L-2,-1 z" fill="#000000" />',
'<path d="M2,-1 A 2,2 0 0 0 -2,-1 A 2,2 0 0 0 2,-1 z" fill="#000000" />',
]
)
p.paper.center_on_y(0)
assert_equal(
p.paper.svg_elements(1),
[
(
'<path d="M-2.0,0.0 L-2.0,2.0 L2.0,2.0 L2.0,0.0 L-2.0,0.0 z" '
'fill="#000000" />'
),
(
'<path d="M2.0,0.0 A 2.0,2.0 0 0 0 -2.0,0.0 '
'A 2.0,2.0 0 0 0 2.0,0.0 z" fill="#000000" />'
),
]
)
示例4: test_override_bounds_copy
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import circle [as 别名]
def test_override_bounds_copy():
# Get the bounds of a Paper, modify them, then set them back changed.
paper = Paper()
paper.override_bounds(0, 0, 1, 1)
bounds = paper.bounds()
bounds.right = 5
assert_equal(paper.bounds(), Bounds(0, 0, 1, 1))
paper.override_bounds(bounds)
assert_equal(paper.bounds(), Bounds(0, 0, 5, 1))
# This works on non-overridden Papers as well.
paper = Paper()
p = Pen()
p.fill_mode()
p.move_to((0.5, 0.5))
p.circle(0.5)
bounds = p.paper.bounds()
bounds.right = 5
assert_equal(p.paper.bounds(), Bounds(0, 0, 1, 1))
p.paper.override_bounds(bounds)
assert_equal(p.paper.bounds(), Bounds(0, 0, 5, 1))
示例5: test_circle_bounds
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import circle [as 别名]
def test_circle_bounds():
p = Pen()
p.fill_mode()
p.move_to((1, 1))
p.circle(1.5)
assert_equal(
p.paper.bounds(),
Bounds(-0.5, -0.5, 2.5, 2.5)
)
示例6: draw
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import circle [as 别名]
def draw():
p = Pen()
p.fill_mode()
p.move_to((0, 0))
p.circle(2)
paper1 = p.paper
p = Pen()
p.fill_mode()
p.move_to((3, 0))
p.circle(1)
paper2 = p.paper
return paper1, paper2
示例7: draw_parametric_func
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import circle [as 别名]
return numpy.column_stack((t, c, s))
def draw_parametric_func(pen, f, t_range):
txy_values = f(t_range)
t, x, y = txy_values[0]
pen.move_to((x, y))
for t, x, y in txy_values[1:]:
pen.line_to((x, y))
mod = t % 1.0
if float_equal(mod, 0) or float_equal(mod, 1.0):
pen.circle(0.01)
step = 0.01
t_range = numpy.arange(-4 + step, 4, step)
pen = Pen()
pen.stroke_mode(0.01, 'green')
draw_parametric_func(pen, euler_spiral_parametric, t_range)
pen.fill_mode('green')
pen.move_to((0.5, 0.5))
pen.circle(0.01)
pen.move_to((-0.5, -0.5))
pen.circle(0.01)
print(pen.paper.format_svg(5, resolution=500))
#TODO: euler spiral solver to end at a particular point. newton-raphson method for root finding convergence?
示例8: Pen
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import circle [as 别名]
from canoepaddle import Pen
p = Pen()
def arm(inner=1.5, outer=3):
p.stroke_mode(1.0)
p.move_forward(inner)
p.turn_right(90)
p.arc_right(200, radius=outer)
p.fill_mode()
p.circle(0.5) # Makeshift round endcaps.
orientation = 70
p.stroke_mode(1.0)
p.move_to((0, 0))
p.circle(1.5)
p.move_to((0, 0))
p.turn_to(orientation)
arm()
p.move_to((0, 0))
p.turn_to(180 + orientation)
arm()
print(p.paper.format_svg())
示例9: Pen
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import circle [as 别名]
from canoepaddle import Pen
p = Pen()
p.fill_mode('green')
p.move_to((0, 0))
p.turn_to(0)
radius = 0.01
for _ in range(200):
p.circle(radius)
p.turn_left(20)
new_radius = radius * 1.05
p.move_forward(radius + new_radius)
radius = new_radius
print(p.paper.format_svg())
示例10: draw
# 需要导入模块: from canoepaddle import Pen [as 别名]
# 或者: from canoepaddle.Pen import circle [as 别名]
def draw():
p = Pen()
center_radius = 3.0
start_radius = radius = 100
start_width = width = 3.0
ratio = (1 / 2) ** (1/5)
series = []
while radius > center_radius / sqrt2:
series.append((radius, width))
radius *= ratio
width *= ratio
p.move_to((0, 0))
for radius, width in series:
p.stroke_mode(width, 'black')
p.circle(radius)
# Parametric conic spirals.
p.move_to((0, 0))
def spiral(theta):
b = (1 / 2) ** (-2 / math.pi)
r = start_radius * (b ** (-theta))
x = r * math.cos(theta)
y = r * math.sin(theta)
z = start_radius - r
return (x, y, z)
def spiral_top1(t):
x, y, z = spiral(t)
return x, y
def spiral_top2(t):
x, y, z = spiral(t)
x = -x
y = -y
return x, y
# Top spirals.
p.stroke_mode(start_width, 'black')
p.parametric(spiral_top1, 0, 4*math.pi, .1)
p.parametric(spiral_top2, 0, 4*math.pi, .1)
# Blank out the bottom triangle.
p.fill_mode('white')
p.move_to((0, 0))
s = start_radius + start_width
p.line_to((-s, -s))
p.line_to((+s, -s))
p.line_to((0, 0))
# Horizontal lines for the bottom triangle.
for radius, width in series:
p.stroke_mode(width, 'black')
p.move_to((-radius, -radius))
p.line_to(
(+radius, -radius),
start_slant=45,
end_slant=-45,
)
# Front spirals.
def spiral_front1(t):
x, y, z = spiral(t)
return (x, z - start_radius)
def spiral_front2(t):
x, y, z = spiral(t)
x = -x
y = -y
return (x, z - start_radius)
p.move_to((0, 0))
p.stroke_mode(start_width, 'black')
p.parametric(spiral_front1, 0, math.pi, .1)
p.parametric(spiral_front2, math.pi, 2*math.pi, .1)
p.parametric(spiral_front1, 2*math.pi, 3*math.pi, .1)
# Fill in the center.
p.move_to((0, 0))
p.fill_mode('black')
p.circle(center_radius)
return p.paper