当前位置: 首页>>代码示例>>Python>>正文


Python Brain.save方法代码示例

本文整理汇总了Python中brain.Brain.save方法的典型用法代码示例。如果您正苦于以下问题:Python Brain.save方法的具体用法?Python Brain.save怎么用?Python Brain.save使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在brain.Brain的用法示例。


在下文中一共展示了Brain.save方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train_single_player

# 需要导入模块: from brain import Brain [as 别名]
# 或者: from brain.Brain import save [as 别名]
def train_single_player():
  sim = DummyGame() # Breakout()
  brain = Brain(sim.width, sim.height, sim.actions_count)
  player = QLearn(sim, brain, "AI")
  scorer = Scorer(stats_frequency)

  for games in xrange(train_games):
    play_single_player_game(player, sim, scorer, display_board=True)
  # Save the model to disk and load it as an inference only model
  model_path = brain.save(models_root)
  print 'Saved trained model to', model_path
开发者ID:andrei-alpha,项目名称:deep-qlearning,代码行数:13,代码来源:main.py

示例2: train_with_opponent

# 需要导入模块: from brain import Brain [as 别名]
# 或者: from brain.Brain import save [as 别名]
def train_with_opponent():
  sim = Connect4()
  if train_mode == "mixt":
    opponents = [RandomPlayer("Rand")]
    for idx, model_path in enumerate(os.listdir(models_root)):
      full_path = os.path.join(models_root, model_path)
      prev_brain = Brain(sim.width,
                         sim.height,
                         sim.actions_count,
                         load_path=full_path)
      opponents.append(QLearn(sim, prev_brain, "v" + str(idx)))
  elif train_mode == "random":
    opponents = [RandomPlayer("Rand")]
  elif train_mode == "minmax":
    opponents = [MinMax(max_level=minmax_level)]
  else:
    raise ValueError, ("Invalid train_mode. Got %s expected "
      "(mixt|random|minmax)") % train_mode

  scorer = Scorer(stats_frequency)
  for step in xrange(new_models):
    brain = Brain(sim.width, sim.height, sim.actions_count)
    player = QLearn(sim, brain, "AI")

    w = [0.1 * i for i in xrange(1, len(opponents) + 1)]
    p = [wi / sum(w) for wi in w]

    for games in xrange(1, 100000):
      if games % win_threshold_games == 0:
        # If the new model wins more than 90% of the games of the last 300
        win_statistics = scorer.get_statistics(win_threshold_games)[0]
        if win_statistics > win_threshold_percentage:
          # Save the model to disk and load it as an inference only model
          model_path = brain.save(models_root)
          prev_brain = Brain(sim.width,
                             sim.height,
                             sim.actions_count,
                             load_path=model_path)
          opponents.append(QLearn(sim, prev_brain, "V" + str(step),
                                  exploration_period=0, discount_factor=0.9))
          print "-" * 70
          print("New model wins %d%s against previous models after "
                "%d games") % (win_statistics, "%", games)
          print "-" * 70
          print ''
          break

      opponent = np.random.choice(opponents, 1, p)[0]
      players = [player, opponent]
      play_game_with_opponent(players, sim, scorer)

  human_player = HumanPlayer("Player")
  while True:
    play_game_with_opponent([opponents[-1], human_player], sim, scorer)
开发者ID:andrei-alpha,项目名称:deep-qlearning,代码行数:56,代码来源:main.py


注:本文中的brain.Brain.save方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。