当前位置: 首页>>代码示例>>Python>>正文


Python Convolutional.initialize方法代码示例

本文整理汇总了Python中blocks.bricks.conv.Convolutional.initialize方法的典型用法代码示例。如果您正苦于以下问题:Python Convolutional.initialize方法的具体用法?Python Convolutional.initialize怎么用?Python Convolutional.initialize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在blocks.bricks.conv.Convolutional的用法示例。


在下文中一共展示了Convolutional.initialize方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_convolutional

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import initialize [as 别名]
def test_convolutional():
    x = tensor.tensor4("x")
    num_channels = 4
    num_filters = 3
    batch_size = 5
    filter_size = (3, 3)
    conv = Convolutional(
        filter_size,
        num_filters,
        num_channels,
        image_size=(17, 13),
        weights_init=Constant(1.0),
        biases_init=Constant(5.0),
    )
    conv.initialize()
    y = conv.apply(x)
    func = function([x], y)

    x_val = numpy.ones((batch_size, num_channels, 17, 13), dtype=theano.config.floatX)
    assert_allclose(
        func(x_val), numpy.prod(filter_size) * num_channels * numpy.ones((batch_size, num_filters, 15, 11)) + 5
    )
    conv.image_size = (17, 13)
    conv.batch_size = 2  # This should have effect on get_dim
    assert conv.get_dim("output") == (num_filters, 15, 11)
开发者ID:piergiaj,项目名称:blocks,代码行数:27,代码来源:test_conv.py

示例2: test_tied_biases

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import initialize [as 别名]
def test_tied_biases():
    x = tensor.tensor4('x')
    num_channels = 4
    num_filters = 3
    batch_size = 5
    filter_size = (3, 3)
    conv = Convolutional(filter_size, num_filters, num_channels,
                         weights_init=Constant(1.), biases_init=Constant(2.),
                         tied_biases=True)
    conv.initialize()
    y = conv.apply(x)
    func = function([x], y)

    # Tied biases allows to pass images of different sizes
    x_val_1 = numpy.ones((batch_size, num_channels, 10,
                          12), dtype=theano.config.floatX)
    x_val_2 = numpy.ones((batch_size, num_channels, 23,
                          19), dtype=theano.config.floatX)

    assert_allclose(func(x_val_1),
                    numpy.prod(filter_size) * num_channels *
                    numpy.ones((batch_size, num_filters, 8, 10)) + 2)
    assert_allclose(func(x_val_2),
                    numpy.prod(filter_size) * num_channels *
                    numpy.ones((batch_size, num_filters, 21, 17)) + 2)
开发者ID:xuanhan863,项目名称:blocks,代码行数:27,代码来源:test_conv.py

示例3: test_untied_biases

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import initialize [as 别名]
def test_untied_biases():
    x = tensor.tensor4('x')
    num_channels = 4
    num_filters = 3
    batch_size = 5
    filter_size = (3, 3)
    conv = Convolutional(filter_size, num_filters, num_channels,
                         weights_init=Constant(1.), biases_init=Constant(2.),
                         image_size=(28, 30), tied_biases=False)
    conv.initialize()

    y = conv.apply(x)
    func = function([x], y)

    # Untied biases provide a bias for every individual output
    assert_allclose(conv.b.eval().shape, (3, 26, 28))

    # Untied biases require images of a specific size
    x_val_1 = numpy.ones((batch_size, num_channels, 28, 30),
                         dtype=theano.config.floatX)

    assert_allclose(func(x_val_1),
                    numpy.prod(filter_size) * num_channels *
                    numpy.ones((batch_size, num_filters, 26, 28)) + 2)

    x_val_2 = numpy.ones((batch_size, num_channels, 23, 19),
                         dtype=theano.config.floatX)

    def wrongsize():
        func(x_val_2)

    assert_raises_regexp(AssertionError, 'AbstractConv shape mismatch',
                         wrongsize)
开发者ID:SwordYork,项目名称:blocks,代码行数:35,代码来源:test_conv.py

示例4: conv_layer

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import initialize [as 别名]
    def conv_layer(self, name, wt, bias, image_size):
        """Creates a Convolutional brick with the given name, weights,
        bias, and image_size."""

        layer = Convolutional(
            name=name,
            filter_size=wt.shape[0:2],
            num_channels=wt.shape[2],  # in
            num_filters=wt.shape[3],  # out
            weights_init=Constant(0),  # does not matter
            biases_init=Constant(0),  # does not matter
            tied_biases=True,
            border_mode="valid",
        )

        if image_size:
            layer.image_size = image_size

        layer.initialize()

        weights = self.to_bc01(wt)
        layer.parameters[0].set_value(weights.astype("float32"))  # W
        layer.parameters[1].set_value(bias.squeeze().astype("float32"))  # b

        return (layer, layer.get_dim("output")[1:3])
开发者ID:Rene90,项目名称:dl4nlp,代码行数:27,代码来源:imagenet.py

示例5: test_no_input_size

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import initialize [as 别名]
def test_no_input_size():
    # suppose x is outputted by some RNN
    x = tensor.tensor4('x')
    filter_size = (1, 3)
    num_filters = 2
    num_channels = 5
    c = Convolutional(filter_size, num_filters, num_channels, tied_biases=True,
                      weights_init=Constant(1.), biases_init=Constant(1.))
    c.initialize()
    out = c.apply(x)
    assert c.get_dim('output') == (2, None, None)
    assert out.ndim == 4

    c = Convolutional(filter_size, num_filters, num_channels,
                      tied_biases=False, weights_init=Constant(1.),
                      biases_init=Constant(1.))
    assert_raises_regexp(ValueError, 'Cannot infer bias size \S+',
                         c.initialize)
开发者ID:xuanhan863,项目名称:blocks,代码行数:20,代码来源:test_conv.py

示例6: Convolutional

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import initialize [as 别名]
from blocks.graph import ComputationGraph

X = T.matrix("features")

o = X.reshape((X.shape[0], 1, 28, 28))

l = Convolutional(filter_size=(5, 5),
        num_filters=32,
        num_channels=1,
        image_size=(28,28),
        weights_init=IsotropicGaussian(std=0.01),
        biases_init=IsotropicGaussian(std=0.01, mean=1.0),
        use_bias=True,
        border_mode="valid",
        step=(1,1))
l.initialize()
o = l.apply(o)

l = BatchNormalizationConv(input_shape=l.get_dim("output"),
        B_init=IsotropicGaussian(std=0.01),
        Y_init=IsotropicGaussian(std=0.01))
l.initialize()
o = l.apply(o)

o = Rectifier().apply(o)

l = MaxPooling(pooling_size=(2, 2),
        step=(2, 2),
        input_dim=l.get_dim("output"))
l.initialize()
o = l.apply(o)
开发者ID:caomw,项目名称:MLFun,代码行数:33,代码来源:simple.py

示例7: ComputationGraph

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import initialize [as 别名]
from blocks.bricks import WEIGHT
from blocks.graph import ComputationGraph
from blocks.filter import VariableFilter
cg = ComputationGraph(cost)
W1, W2 = VariableFilter(roles=[WEIGHT])(cg.variables)
cost = cost + 0.005 * (W1 ** 2).sum() + 0.005 * (W2 ** 2).sum()
cost.name = 'cost_with_regularization'

from blocks.bricks import MLP
mlp = MLP(activations=[Rectifier(), Softmax()], dims=[784, 100, 10]).apply(x)

from blocks.initialization import IsotropicGaussian, Constant
input_to_hidden.weights_init = hidden_to_output.weights_init = IsotropicGaussian(0.01)
input_to_hidden.biases_init = hidden_to_output.biases_init = Constant(0)
input_to_hidden.initialize()
hidden_to_output.initialize()

from fuel.datasets import MNIST
mnist = MNIST("train",)

from fuel.streams import DataStream
from fuel.schemes import SequentialScheme
from fuel.transformers import Flatten
data_stream = Flatten(DataStream.default_stream(
 mnist,
 iteration_scheme=SequentialScheme(mnist.num_examples, batch_size=256)))

from blocks.algorithms import GradientDescent, Scale
algorithm = GradientDescent(step_rule=None,cost=cost,params=cg.parameters)
开发者ID:mwoodson1,项目名称:MNIST,代码行数:31,代码来源:MNIST_blocks.py


注:本文中的blocks.bricks.conv.Convolutional.initialize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。