本文整理汇总了Python中blocks.bricks.conv.Convolutional类的典型用法代码示例。如果您正苦于以下问题:Python Convolutional类的具体用法?Python Convolutional怎么用?Python Convolutional使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Convolutional类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_untied_biases
def test_untied_biases():
x = tensor.tensor4('x')
num_channels = 4
num_filters = 3
batch_size = 5
filter_size = (3, 3)
conv = Convolutional(filter_size, num_filters, num_channels,
weights_init=Constant(1.), biases_init=Constant(2.),
image_size=(28, 30), tied_biases=False)
conv.initialize()
y = conv.apply(x)
func = function([x], y)
# Untied biases provide a bias for every individual output
assert_allclose(conv.b.eval().shape, (3, 26, 28))
# Untied biases require images of a specific size
x_val_1 = numpy.ones((batch_size, num_channels, 28, 30),
dtype=theano.config.floatX)
assert_allclose(func(x_val_1),
numpy.prod(filter_size) * num_channels *
numpy.ones((batch_size, num_filters, 26, 28)) + 2)
x_val_2 = numpy.ones((batch_size, num_channels, 23, 19),
dtype=theano.config.floatX)
def wrongsize():
func(x_val_2)
assert_raises_regexp(AssertionError, 'AbstractConv shape mismatch',
wrongsize)
示例2: test_tied_biases
def test_tied_biases():
x = tensor.tensor4('x')
num_channels = 4
num_filters = 3
batch_size = 5
filter_size = (3, 3)
conv = Convolutional(filter_size, num_filters, num_channels,
weights_init=Constant(1.), biases_init=Constant(2.),
tied_biases=True)
conv.initialize()
y = conv.apply(x)
func = function([x], y)
# Tied biases allows to pass images of different sizes
x_val_1 = numpy.ones((batch_size, num_channels, 10,
12), dtype=theano.config.floatX)
x_val_2 = numpy.ones((batch_size, num_channels, 23,
19), dtype=theano.config.floatX)
assert_allclose(func(x_val_1),
numpy.prod(filter_size) * num_channels *
numpy.ones((batch_size, num_filters, 8, 10)) + 2)
assert_allclose(func(x_val_2),
numpy.prod(filter_size) * num_channels *
numpy.ones((batch_size, num_filters, 21, 17)) + 2)
示例3: build_conv_layers
def build_conv_layers(self, image=None) :
if image is None :
image = T.ftensor4('spectrogram')
else :
image = image
conv_list = []
for layer in range(self.layers) :
layer_param = self.params[layer]
conv_layer = Convolutional(layer_param[0], layer_param[1], layer_param[2])
pool_layer = MaxPooling(layer_param[3])
conv_layer.name = "convolution"+str(layer)
pool_layer.name = "maxpooling"+str(layer)
conv_list.append(conv_layer)
conv_list.append(pool_layer)
conv_list.append(Rectifier())
conv_seq = ConvolutionalSequence(
conv_list,
self.params[0][2],
image_size=self.image_size,
weights_init=IsotropicGaussian(std=0.5, mean=0),
biases_init=Constant(0))
conv_seq._push_allocation_config()
conv_seq.initialize()
out = conv_seq.apply(image)
return out, conv_seq.get_dim('output')
示例4: conv_layer
def conv_layer(self, name, wt, bias, image_size):
"""Creates a Convolutional brick with the given name, weights,
bias, and image_size."""
layer = Convolutional(
name=name,
filter_size=wt.shape[0:2],
num_channels=wt.shape[2], # in
num_filters=wt.shape[3], # out
weights_init=Constant(0), # does not matter
biases_init=Constant(0), # does not matter
tied_biases=True,
border_mode="valid",
)
if image_size:
layer.image_size = image_size
layer.initialize()
weights = self.to_bc01(wt)
layer.parameters[0].set_value(weights.astype("float32")) # W
layer.parameters[1].set_value(bias.squeeze().astype("float32")) # b
return (layer, layer.get_dim("output")[1:3])
示例5: test_convolutional_sequence
def test_convolutional_sequence():
x = tensor.tensor4('x')
num_channels = 4
pooling_size = 3
batch_size = 5
act = Rectifier()
conv = Convolutional((3, 3), 5, weights_init=Constant(1.),
biases_init=Constant(5.))
pooling = MaxPooling(pooling_size=(pooling_size, pooling_size))
conv2 = Convolutional((2, 2), 4, weights_init=Constant(1.))
seq = ConvolutionalSequence([conv, act, pooling.apply, conv2.apply, act],
num_channels, image_size=(17, 13))
seq.push_allocation_config()
assert conv.num_channels == 4
assert conv2.num_channels == 5
conv2.use_bias = False
y = seq.apply(x)
seq.initialize()
func = function([x], y)
x_val = numpy.ones((batch_size, 4, 17, 13), dtype=theano.config.floatX)
y_val = (numpy.ones((batch_size, 4, 4, 2)) *
(9 * 4 + 5) * 4 * 5)
assert_allclose(func(x_val), y_val)
示例6: ConvolutionalActivation
class ConvolutionalActivation(Initializable):
"""A convolution followed by an activation function.
Parameters
----------
activation : :class:`.BoundApplication`
The application method to apply after convolution (i.e.
the nonlinear activation function)
See Also
--------
:class:`Convolutional` : For the documentation of other parameters.
"""
@lazy(allocation=['filter_size', 'num_filters', 'num_channels'])
def __init__(self, activation, filter_size, num_filters, num_channels,
batch_size=None, image_size=None, step=(1, 1),
border_mode='valid', tied_biases=False, **kwargs):
self.convolution = Convolutional(name='conv'+ kwargs['name'])
self.bn = BatchNorm(name='bn'+ kwargs['name'])
self.activation = activation
self.filter_size = filter_size
self.num_filters = num_filters
self.num_channels = num_channels
self.batch_size = batch_size
self.image_size = image_size
self.step = step
self.border_mode = border_mode
self.tied_biases = tied_biases
super(ConvolutionalActivation, self).__init__(**kwargs)
self.children = [self.convolution, self.bn, self.activation]
def _push_allocation_config(self):
for attr in ['filter_size', 'num_filters', 'step', 'border_mode',
'batch_size', 'num_channels', 'image_size',
'tied_biases']:
setattr(self.convolution, attr, getattr(self, attr))
setattr(self.bn, 'input_dim', self.num_filters)
def get_dim(self, name):
# TODO The name of the activation output doesn't need to be `output`
return self.convolution.get_dim(name)
def apply(self, input_):
out = self.convolution.apply(input_)
out = self.bn.apply(out)
out = self.activation.apply(out)
return out
def inference(self, input_):
out = self.convolution.apply(input_)
out = self.bn.inference(out)
out = self.activation.apply(out)
return out
示例7: test_convolutional
def test_convolutional():
x = tensor.tensor4("x")
num_channels = 4
num_filters = 3
batch_size = 5
filter_size = (3, 3)
conv = Convolutional(
filter_size,
num_filters,
num_channels,
image_size=(17, 13),
weights_init=Constant(1.0),
biases_init=Constant(5.0),
)
conv.initialize()
y = conv.apply(x)
func = function([x], y)
x_val = numpy.ones((batch_size, num_channels, 17, 13), dtype=theano.config.floatX)
assert_allclose(
func(x_val), numpy.prod(filter_size) * num_channels * numpy.ones((batch_size, num_filters, 15, 11)) + 5
)
conv.image_size = (17, 13)
conv.batch_size = 2 # This should have effect on get_dim
assert conv.get_dim("output") == (num_filters, 15, 11)
示例8: __init__
def __init__(self, filter_size, num_filters, num_channels, noise_batch_size,
image_size=(None, None), step=(1, 1), border_mode='valid',
tied_biases=True,
prior_mean=0, prior_noise_level=0, **kwargs):
self.convolution = Convolutional()
self.mask = Convolutional(name='mask')
children = [self.convolution, self.mask]
kwargs.setdefault('children', []).extend(children)
super(NoisyConvolutional, self).__init__(**kwargs)
self.filter_size = filter_size
self.num_filters = num_filters
self.num_channels = num_channels
self.noise_batch_size = noise_batch_size
self.image_size = image_size
self.step = step
self.border_mode = border_mode
self.tied_biases = tied_biases
self.prior_mean = prior_mean
self.prior_noise_level = prior_noise_level
示例9: __init__
def __init__(self, filter_size, num_filters, num_channels,
batch_size=None,
mid_noise=False,
out_noise=False,
tied_noise=False,
tied_sigma=False,
noise_rate=None,
noise_batch_size=None,
prior_noise_level=None,
image_size=(None, None), step=(1, 1),
**kwargs):
self.filter_size = filter_size
self.num_filters = num_filters
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.mid_noise = mid_noise
self.noise_batch_size = noise_batch_size
self.noise_rate = noise_rate
self.step = step
self.border_mode = 'half'
self.tied_biases = True
depth = 2
self.b0 = SpatialBatchNormalization(name='b0')
self.r0 = Rectifier(name='r0')
self.n0 = (SpatialNoise(name='n0', noise_rate=self.noise_rate,
tied_noise=tied_noise, tied_sigma=tied_sigma,
prior_noise_level=prior_noise_level) if mid_noise else None)
self.c0 = Convolutional(name='c0')
self.b1 = SpatialBatchNormalization(name='b1')
self.r1 = Rectifier(name='r1')
self.n1 = (SpatialNoise(name='n1', noise_rate=self.noise_rate,
tied_noise=tied_noise, tied_sigma=tied_sigma,
prior_noise_level=prior_noise_level) if out_noise else None)
self.c1 = Convolutional(name='c1')
kwargs.setdefault('children', []).extend([c for c in [
self.c0, self.b0, self.r0, self.n0,
self.c1, self.b1, self.r1, self.n1] if c is not None])
super(ResidualConvolutional, self).__init__(**kwargs)
示例10: __init__
def __init__(self, activation, filter_size, num_filters, num_channels,
batch_size=None, image_size=None, step=(1, 1),
border_mode='valid', tied_biases=False, **kwargs):
self.convolution = Convolutional(name='conv'+ kwargs['name'])
self.bn = BatchNorm(name='bn'+ kwargs['name'])
self.activation = activation
self.filter_size = filter_size
self.num_filters = num_filters
self.num_channels = num_channels
self.batch_size = batch_size
self.image_size = image_size
self.step = step
self.border_mode = border_mode
self.tied_biases = tied_biases
super(ConvolutionalActivation, self).__init__(**kwargs)
self.children = [self.convolution, self.bn, self.activation]
示例11: __init__
def __init__(self, activation, filter_size, num_filters, num_channels,
batch_size=None, image_size=None, step=(1, 1),
border_mode='valid', **kwargs):
self.convolution = Convolutional()
self.filter_size = filter_size
self.num_filters = num_filters
self.num_channels = num_channels
self.batch_size = batch_size
self.image_size = image_size
self.step = step
self.border_mode = border_mode
super(ConvolutionalActivation, self).__init__(
application_methods=[self.convolution.apply, activation],
**kwargs)
示例12: ConvolutionalActivation
class ConvolutionalActivation(Sequence, Initializable):
"""A convolution followed by an activation function.
Parameters
----------
activation : :class:`.BoundApplication`
The application method to apply after convolution (i.e.
the nonlinear activation function)
See Also
--------
:class:`Convolutional` for the other parameters.
"""
@lazy(allocation=['filter_size', 'num_filters', 'num_channels'])
def __init__(self, activation, filter_size, num_filters, num_channels,
batch_size=None, image_size=None, step=(1, 1),
border_mode='valid', **kwargs):
self.convolution = Convolutional()
self.filter_size = filter_size
self.num_filters = num_filters
self.num_channels = num_channels
self.batch_size = batch_size
self.image_size = image_size
self.step = step
self.border_mode = border_mode
super(ConvolutionalActivation, self).__init__(
application_methods=[self.convolution.apply, activation],
**kwargs)
def _push_allocation_config(self):
for attr in ['filter_size', 'num_filters', 'step', 'border_mode',
'batch_size', 'num_channels', 'image_size']:
setattr(self.convolution, attr, getattr(self, attr))
def get_dim(self, name):
# TODO The name of the activation output doesn't need to be `output`
return self.convolution.get_dim(name)
示例13: test_no_input_size
def test_no_input_size():
# suppose x is outputted by some RNN
x = tensor.tensor4('x')
filter_size = (1, 3)
num_filters = 2
num_channels = 5
c = Convolutional(filter_size, num_filters, num_channels, tied_biases=True,
weights_init=Constant(1.), biases_init=Constant(1.))
c.initialize()
out = c.apply(x)
assert c.get_dim('output') == (2, None, None)
assert out.ndim == 4
c = Convolutional(filter_size, num_filters, num_channels,
tied_biases=False, weights_init=Constant(1.),
biases_init=Constant(1.))
assert_raises_regexp(ValueError, 'Cannot infer bias size \S+',
c.initialize)
示例14: ResidualConvolutional
class ResidualConvolutional(Initializable):
@lazy(allocation=['filter_size', 'num_filters', 'num_channels'])
def __init__(self, filter_size, num_filters, num_channels,
batch_size=None,
mid_noise=False,
out_noise=False,
tied_noise=False,
tied_sigma=False,
noise_rate=None,
noise_batch_size=None,
prior_noise_level=None,
image_size=(None, None), step=(1, 1),
**kwargs):
self.filter_size = filter_size
self.num_filters = num_filters
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.mid_noise = mid_noise
self.noise_batch_size = noise_batch_size
self.noise_rate = noise_rate
self.step = step
self.border_mode = 'half'
self.tied_biases = True
depth = 2
self.b0 = SpatialBatchNormalization(name='b0')
self.r0 = Rectifier(name='r0')
self.n0 = (SpatialNoise(name='n0', noise_rate=self.noise_rate,
tied_noise=tied_noise, tied_sigma=tied_sigma,
prior_noise_level=prior_noise_level) if mid_noise else None)
self.c0 = Convolutional(name='c0')
self.b1 = SpatialBatchNormalization(name='b1')
self.r1 = Rectifier(name='r1')
self.n1 = (SpatialNoise(name='n1', noise_rate=self.noise_rate,
tied_noise=tied_noise, tied_sigma=tied_sigma,
prior_noise_level=prior_noise_level) if out_noise else None)
self.c1 = Convolutional(name='c1')
kwargs.setdefault('children', []).extend([c for c in [
self.c0, self.b0, self.r0, self.n0,
self.c1, self.b1, self.r1, self.n1] if c is not None])
super(ResidualConvolutional, self).__init__(**kwargs)
def get_dim(self, name):
if name == 'input_':
return ((self.num_channels,) + self.image_size)
if name == 'output':
return self.c1.get_dim(name)
return super(ResidualConvolutionalUnit, self).get_dim(name)
@property
def num_output_channels(self):
return self.num_filters
def _push_allocation_config(self):
self.b0.input_dim = self.get_dim('input_')
self.b0.push_allocation_config()
if self.r0:
self.r0.push_allocation_config()
if self.n0:
self.n0.noise_batch_size = self.noise_batch_size
self.n0.num_channels = self.num_channels
self.n0.image_size = self.image_size
self.c0.filter_size = self.filter_size
self.c0.batch_size = self.batch_size
self.c0.num_channels = self.num_channels
self.c0.num_filters = self.num_filters
self.c0.border_mode = self.border_mode
self.c0.image_size = self.image_size
self.c0.step = self.step
self.c0.use_bias = False
self.c0.push_allocation_config()
c0_shape = self.c0.get_dim('output')
self.b1.input_dim = c0_shape
self.b1.push_allocation_config()
self.r1.push_allocation_config()
if self.n1:
self.n1.noise_batch_size = self.noise_batch_size
self.n1.num_channels = self.num_filters
self.n1.image_size = c0_shape[1:]
self.c1.filter_size = self.filter_size
self.c1.batch_size = self.batch_size
self.c1.num_channels = self.num_filters
self.c1.num_filters = self.num_filters
self.c1.border_mode = self.border_mode
self.c1.image_size = c0_shape[1:]
self.c1.step = (1, 1)
self.c1.use_bias = False
self.c1.push_allocation_config()
@application(inputs=['input_'], outputs=['output'])
def apply(self, input_):
shortcut = input_
# Batchnorm, then Relu, then Convolution
first_conv = self.b0.apply(input_)
first_conv = self.r0.apply(first_conv)
if self.n0:
first_conv = self.n0.apply(first_conv)
first_conv = self.c0.apply(first_conv)
# Batchnorm, then Relu, then Convolution (second time)
#.........这里部分代码省略.........
示例15: Convolutional
from theano import tensor
x = tensor.matrix('features')
from blocks.bricks import Linear, Rectifier, Softmax
from blocks.bricks.conv import Convolutional, ConvolutionalActivation
input_to_hidden = Convolutional((5,5), 32, 1,border_mode='same')
h = Rectifier().apply(input_to_hidden.apply(x))
hidden_to_output = Linear(name='hidden_to_output', input_dim=100, output_dim=10)
y_hat = Softmax().apply(hidden_to_output.apply(h))
y = tensor.lmatrix('targets')
from blocks.bricks.cost import CategoricalCrossEntropy
cost = CategoricalCrossEntropy().apply(y.flatten(), y_hat)
from blocks.bricks import WEIGHT
from blocks.graph import ComputationGraph
from blocks.filter import VariableFilter
cg = ComputationGraph(cost)
W1, W2 = VariableFilter(roles=[WEIGHT])(cg.variables)
cost = cost + 0.005 * (W1 ** 2).sum() + 0.005 * (W2 ** 2).sum()
cost.name = 'cost_with_regularization'
from blocks.bricks import MLP
mlp = MLP(activations=[Rectifier(), Softmax()], dims=[784, 100, 10]).apply(x)
from blocks.initialization import IsotropicGaussian, Constant
input_to_hidden.weights_init = hidden_to_output.weights_init = IsotropicGaussian(0.01)
input_to_hidden.biases_init = hidden_to_output.biases_init = Constant(0)
input_to_hidden.initialize()