当前位置: 首页>>代码示例>>Python>>正文


Python Convolutional.apply方法代码示例

本文整理汇总了Python中blocks.bricks.conv.Convolutional.apply方法的典型用法代码示例。如果您正苦于以下问题:Python Convolutional.apply方法的具体用法?Python Convolutional.apply怎么用?Python Convolutional.apply使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在blocks.bricks.conv.Convolutional的用法示例。


在下文中一共展示了Convolutional.apply方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: ConvolutionalActivation

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import apply [as 别名]
class ConvolutionalActivation(Initializable):
    """A convolution followed by an activation function.
    Parameters
    ----------
    activation : :class:`.BoundApplication`
        The application method to apply after convolution (i.e.
        the nonlinear activation function)
    See Also
    --------
    :class:`Convolutional` : For the documentation of other parameters.
    """
    @lazy(allocation=['filter_size', 'num_filters', 'num_channels'])
    def __init__(self, activation, filter_size, num_filters, num_channels,
                 batch_size=None, image_size=None, step=(1, 1),
                 border_mode='valid', tied_biases=False, **kwargs):
        self.convolution = Convolutional(name='conv'+ kwargs['name'])
        self.bn = BatchNorm(name='bn'+ kwargs['name'])
        self.activation = activation
        self.filter_size = filter_size
        self.num_filters = num_filters
        self.num_channels = num_channels
        self.batch_size = batch_size
        self.image_size = image_size
        self.step = step
        self.border_mode = border_mode
        self.tied_biases = tied_biases
        super(ConvolutionalActivation, self).__init__(**kwargs)
        self.children = [self.convolution, self.bn, self.activation]
        

    def _push_allocation_config(self):
        for attr in ['filter_size', 'num_filters', 'step', 'border_mode',
                     'batch_size', 'num_channels', 'image_size',
                     'tied_biases']:
            setattr(self.convolution, attr, getattr(self, attr))
        setattr(self.bn, 'input_dim', self.num_filters)
        
    def get_dim(self, name):
        # TODO The name of the activation output doesn't need to be `output`
        return self.convolution.get_dim(name)
        
    def apply(self, input_):
        out = self.convolution.apply(input_)
        out = self.bn.apply(out)
        out = self.activation.apply(out)
        return out
        
    def inference(self, input_):
        out = self.convolution.apply(input_)
        out = self.bn.inference(out)
        out = self.activation.apply(out)
        return out
开发者ID:harmdevries89,项目名称:lvq,代码行数:54,代码来源:conv.py

示例2: test_tied_biases

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import apply [as 别名]
def test_tied_biases():
    x = tensor.tensor4('x')
    num_channels = 4
    num_filters = 3
    batch_size = 5
    filter_size = (3, 3)
    conv = Convolutional(filter_size, num_filters, num_channels,
                         weights_init=Constant(1.), biases_init=Constant(2.),
                         tied_biases=True)
    conv.initialize()
    y = conv.apply(x)
    func = function([x], y)

    # Tied biases allows to pass images of different sizes
    x_val_1 = numpy.ones((batch_size, num_channels, 10,
                          12), dtype=theano.config.floatX)
    x_val_2 = numpy.ones((batch_size, num_channels, 23,
                          19), dtype=theano.config.floatX)

    assert_allclose(func(x_val_1),
                    numpy.prod(filter_size) * num_channels *
                    numpy.ones((batch_size, num_filters, 8, 10)) + 2)
    assert_allclose(func(x_val_2),
                    numpy.prod(filter_size) * num_channels *
                    numpy.ones((batch_size, num_filters, 21, 17)) + 2)
开发者ID:xuanhan863,项目名称:blocks,代码行数:27,代码来源:test_conv.py

示例3: test_convolutional

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import apply [as 别名]
def test_convolutional():
    x = tensor.tensor4("x")
    num_channels = 4
    num_filters = 3
    batch_size = 5
    filter_size = (3, 3)
    conv = Convolutional(
        filter_size,
        num_filters,
        num_channels,
        image_size=(17, 13),
        weights_init=Constant(1.0),
        biases_init=Constant(5.0),
    )
    conv.initialize()
    y = conv.apply(x)
    func = function([x], y)

    x_val = numpy.ones((batch_size, num_channels, 17, 13), dtype=theano.config.floatX)
    assert_allclose(
        func(x_val), numpy.prod(filter_size) * num_channels * numpy.ones((batch_size, num_filters, 15, 11)) + 5
    )
    conv.image_size = (17, 13)
    conv.batch_size = 2  # This should have effect on get_dim
    assert conv.get_dim("output") == (num_filters, 15, 11)
开发者ID:piergiaj,项目名称:blocks,代码行数:27,代码来源:test_conv.py

示例4: test_untied_biases

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import apply [as 别名]
def test_untied_biases():
    x = tensor.tensor4('x')
    num_channels = 4
    num_filters = 3
    batch_size = 5
    filter_size = (3, 3)
    conv = Convolutional(filter_size, num_filters, num_channels,
                         weights_init=Constant(1.), biases_init=Constant(2.),
                         image_size=(28, 30), tied_biases=False)
    conv.initialize()

    y = conv.apply(x)
    func = function([x], y)

    # Untied biases provide a bias for every individual output
    assert_allclose(conv.b.eval().shape, (3, 26, 28))

    # Untied biases require images of a specific size
    x_val_1 = numpy.ones((batch_size, num_channels, 28, 30),
                         dtype=theano.config.floatX)

    assert_allclose(func(x_val_1),
                    numpy.prod(filter_size) * num_channels *
                    numpy.ones((batch_size, num_filters, 26, 28)) + 2)

    x_val_2 = numpy.ones((batch_size, num_channels, 23, 19),
                         dtype=theano.config.floatX)

    def wrongsize():
        func(x_val_2)

    assert_raises_regexp(AssertionError, 'AbstractConv shape mismatch',
                         wrongsize)
开发者ID:SwordYork,项目名称:blocks,代码行数:35,代码来源:test_conv.py

示例5: test_no_input_size

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import apply [as 别名]
def test_no_input_size():
    # suppose x is outputted by some RNN
    x = tensor.tensor4('x')
    filter_size = (1, 3)
    num_filters = 2
    num_channels = 5
    c = Convolutional(filter_size, num_filters, num_channels, tied_biases=True,
                      weights_init=Constant(1.), biases_init=Constant(1.))
    c.initialize()
    out = c.apply(x)
    assert c.get_dim('output') == (2, None, None)
    assert out.ndim == 4

    c = Convolutional(filter_size, num_filters, num_channels,
                      tied_biases=False, weights_init=Constant(1.),
                      biases_init=Constant(1.))
    assert_raises_regexp(ValueError, 'Cannot infer bias size \S+',
                         c.initialize)
开发者ID:xuanhan863,项目名称:blocks,代码行数:20,代码来源:test_conv.py

示例6: ResidualConvolutional

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import apply [as 别名]
class ResidualConvolutional(Initializable):
    @lazy(allocation=['filter_size', 'num_filters', 'num_channels'])
    def __init__(self, filter_size, num_filters, num_channels,
                 batch_size=None,
                 mid_noise=False,
                 out_noise=False,
                 tied_noise=False,
                 tied_sigma=False,
                 noise_rate=None,
                 noise_batch_size=None,
                 prior_noise_level=None,
                 image_size=(None, None), step=(1, 1),
                 **kwargs):
        self.filter_size = filter_size
        self.num_filters = num_filters
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.mid_noise = mid_noise
        self.noise_batch_size = noise_batch_size
        self.noise_rate = noise_rate
        self.step = step
        self.border_mode = 'half'
        self.tied_biases = True
        depth = 2

        self.b0 = SpatialBatchNormalization(name='b0')
        self.r0 = Rectifier(name='r0')
        self.n0 = (SpatialNoise(name='n0', noise_rate=self.noise_rate,
                tied_noise=tied_noise, tied_sigma=tied_sigma,
                prior_noise_level=prior_noise_level) if mid_noise else None)
        self.c0 = Convolutional(name='c0')
        self.b1 = SpatialBatchNormalization(name='b1')
        self.r1 = Rectifier(name='r1')
        self.n1 = (SpatialNoise(name='n1', noise_rate=self.noise_rate,
                tied_noise=tied_noise, tied_sigma=tied_sigma,
                prior_noise_level=prior_noise_level) if out_noise else None)
        self.c1 = Convolutional(name='c1')
        kwargs.setdefault('children', []).extend([c for c in [
            self.c0, self.b0, self.r0, self.n0,
            self.c1, self.b1, self.r1, self.n1] if c is not None])
        super(ResidualConvolutional, self).__init__(**kwargs)

    def get_dim(self, name):
        if name == 'input_':
            return ((self.num_channels,) + self.image_size)
        if name == 'output':
            return self.c1.get_dim(name)
        return super(ResidualConvolutionalUnit, self).get_dim(name)

    @property
    def num_output_channels(self):
        return self.num_filters

    def _push_allocation_config(self):
        self.b0.input_dim = self.get_dim('input_')
        self.b0.push_allocation_config()
        if self.r0:
            self.r0.push_allocation_config()
        if self.n0:
            self.n0.noise_batch_size = self.noise_batch_size
            self.n0.num_channels = self.num_channels
            self.n0.image_size = self.image_size
        self.c0.filter_size = self.filter_size
        self.c0.batch_size = self.batch_size
        self.c0.num_channels = self.num_channels
        self.c0.num_filters = self.num_filters
        self.c0.border_mode = self.border_mode
        self.c0.image_size = self.image_size
        self.c0.step = self.step
        self.c0.use_bias = False
        self.c0.push_allocation_config()
        c0_shape = self.c0.get_dim('output')
        self.b1.input_dim = c0_shape
        self.b1.push_allocation_config()
        self.r1.push_allocation_config()
        if self.n1:
            self.n1.noise_batch_size = self.noise_batch_size
            self.n1.num_channels = self.num_filters
            self.n1.image_size = c0_shape[1:]
        self.c1.filter_size = self.filter_size
        self.c1.batch_size = self.batch_size
        self.c1.num_channels = self.num_filters
        self.c1.num_filters = self.num_filters
        self.c1.border_mode = self.border_mode
        self.c1.image_size = c0_shape[1:]
        self.c1.step = (1, 1)
        self.c1.use_bias = False
        self.c1.push_allocation_config()

    @application(inputs=['input_'], outputs=['output'])
    def apply(self, input_):
        shortcut = input_
        # Batchnorm, then Relu, then Convolution
        first_conv = self.b0.apply(input_)
        first_conv = self.r0.apply(first_conv)
        if self.n0:
            first_conv = self.n0.apply(first_conv)
        first_conv = self.c0.apply(first_conv)
        # Batchnorm, then Relu, then Convolution (second time)
#.........这里部分代码省略.........
开发者ID:davidbau,项目名称:net-intent,代码行数:103,代码来源:resnet.py

示例7: enumerate

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import apply [as 别名]
for i, p in enumerate(convs):
    # Convolution bricks
    conv = Convolutional(
        filter_size=(p["filter_size"], 1),
        #                   step=(p['stride'],1),
        num_filters=p["nfilter"],
        num_channels=conv_in_channels,
        batch_size=batch_size,
        border_mode="valid",
        tied_biases=True,
        name="conv%d" % i,
    )
    cb.append(conv)
    maxpool = MaxPooling(pooling_size=(p["pool_stride"], 1), name="mp%d" % i)

    conv_out = conv.apply(conv_in)[:, :, :: p["stride"], :]
    conv_out = maxpool.apply(conv_out)
    if p["normalize"]:
        conv_out_mean = conv_out.mean(axis=2).mean(axis=0)
        conv_out_var = ((conv_out - conv_out_mean[None, :, None, :]) ** 2).mean(axis=2).mean(axis=0).sqrt()
        conv_out = (conv_out - conv_out_mean[None, :, None, :]) / conv_out_var[None, :, None, :]
    if p["activation"] is not None:
        conv_out = p["activation"].apply(conv_out)
    if p["dropout"] > 0:
        b = [p["activation"] if p["activation"] is not None else conv]
        dropout_locs.append((VariableFilter(bricks=b, name="output"), p["dropout"]))
    if p["skip"] is not None and len(p["skip"]) > 0:
        maxpooladd = MaxPooling(pooling_size=(p["stride"] * p["pool_stride"], 1), name="Mp%d" % i)
        skip = []
        if "max" in p["skip"]:
            skip.append(maxpooladd.apply(conv_in)[:, :, : conv_out.shape[2], :])
开发者ID:thomasmesnard,项目名称:CTC-LSTM,代码行数:33,代码来源:main_timit.py

示例8: Convolutional

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import apply [as 别名]
X = T.matrix("features")

o = X.reshape((X.shape[0], 1, 28, 28))

l = Convolutional(filter_size=(5, 5),
        num_filters=32,
        num_channels=1,
        image_size=(28,28),
        weights_init=IsotropicGaussian(std=0.01),
        biases_init=IsotropicGaussian(std=0.01, mean=1.0),
        use_bias=True,
        border_mode="valid",
        step=(1,1))
l.initialize()
o = l.apply(o)

l = BatchNormalizationConv(input_shape=l.get_dim("output"),
        B_init=IsotropicGaussian(std=0.01),
        Y_init=IsotropicGaussian(std=0.01))
l.initialize()
o = l.apply(o)

o = Rectifier().apply(o)

l = MaxPooling(pooling_size=(2, 2),
        step=(2, 2),
        input_dim=l.get_dim("output"))
l.initialize()
o = l.apply(o)
开发者ID:caomw,项目名称:MLFun,代码行数:31,代码来源:simple.py

示例9: Convolutional

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import apply [as 别名]
from theano import tensor
x = tensor.matrix('features')

from blocks.bricks import Linear, Rectifier, Softmax
from blocks.bricks.conv import Convolutional, ConvolutionalActivation
input_to_hidden = Convolutional((5,5), 32, 1,border_mode='same')
h = Rectifier().apply(input_to_hidden.apply(x))


hidden_to_output = Linear(name='hidden_to_output', input_dim=100, output_dim=10)
y_hat = Softmax().apply(hidden_to_output.apply(h))

y = tensor.lmatrix('targets')
from blocks.bricks.cost import CategoricalCrossEntropy
cost = CategoricalCrossEntropy().apply(y.flatten(), y_hat)

from blocks.bricks import WEIGHT
from blocks.graph import ComputationGraph
from blocks.filter import VariableFilter
cg = ComputationGraph(cost)
W1, W2 = VariableFilter(roles=[WEIGHT])(cg.variables)
cost = cost + 0.005 * (W1 ** 2).sum() + 0.005 * (W2 ** 2).sum()
cost.name = 'cost_with_regularization'

from blocks.bricks import MLP
mlp = MLP(activations=[Rectifier(), Softmax()], dims=[784, 100, 10]).apply(x)

from blocks.initialization import IsotropicGaussian, Constant
input_to_hidden.weights_init = hidden_to_output.weights_init = IsotropicGaussian(0.01)
input_to_hidden.biases_init = hidden_to_output.biases_init = Constant(0)
input_to_hidden.initialize()
开发者ID:mwoodson1,项目名称:MNIST,代码行数:33,代码来源:MNIST_blocks.py

示例10: SpatialNoise

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import apply [as 别名]
class SpatialNoise(NoiseLayer, Initializable, Random):
    """A learned noise layer.
    """
    @lazy(allocation=['input_dim'])
    def __init__(self, input_dim, noise_batch_size=None, noise_rate=None,
                 tied_noise=False, tied_sigma=False,
                 prior_mean=0, prior_noise_level=0, **kwargs):
        self.mask = Convolutional(name='mask')
        self.flatten = GlobalAverageFlattener() if tied_sigma else None
        children = list(p for p in [self.mask, self.flatten] if p is not None)
        kwargs.setdefault('children', []).extend(children)
        super(SpatialNoise, self).__init__(**kwargs)
        self.input_dim = input_dim
        self.tied_noise = tied_noise
        self.tied_sigma = tied_sigma
        self.noise_batch_size = noise_batch_size
        self.noise_rate = noise_rate if noise_rate is not None else 1.0
        self.prior_mean = prior_mean
        self.prior_noise_level = prior_noise_level
        self._training_mode = []

    def _push_allocation_config(self):
        self.mask.filter_size = (1, 1)
        self.mask.num_filters = self.num_channels
        self.mask.num_channels = self.num_channels
        self.mask.image_size = self.image_size

    def _allocate(self):
        if self.noise_batch_size is not None:
            if self.tied_noise:
                N = shared_floatx_zeros(
                        (self.noise_batch_size, self.input_dim[0]), name='N')
            else:
                N = shared_floatx_zeros(
                        (self.noise_batch_size,) + self.input_dim, name='N')
            add_role(N, NOISE)
            self.parameters.append(N)

    @application(inputs=['input_'], outputs=['output'])
    def apply(self, input_, application_call):
        """Apply the linear transformation followed by masking with noise.
        Parameters
        ----------
        input_ : :class:`~tensor.TensorVariable`
            The input on which to apply the transformations
        Returns
        -------
        output : :class:`~tensor.TensorVariable`
            The transformed input
        """

        # When not in training mode, turn off noise
        if not self._training_mode:
            return input_

        if self.tied_sigma:
            average = tensor.shape_padright(self.flatten.apply(input_), 2)
            noise_level = (self.prior_noise_level -
                    tensor.clip(self.mask.apply(average), -16, 16))
            noise_level = tensor.patternbroadcast(noise_level,
                    (False, False, True, True))
            noise_level = copy_and_tag_noise(
                    noise_level, self, LOG_SIGMA, 'log_sigma')
        else:
            average = input_
            noise_level = (self.prior_noise_level -
                    tensor.clip(self.mask.apply(input_), -16, 16))
            noise_level = copy_and_tag_noise(
                    noise_level, self, LOG_SIGMA, 'log_sigma')
        # Allow incomplete batches by just taking the noise that is needed
        if self.tied_noise:
            if self.noise_batch_size is not None:
                noise = self.parameters[0][:input_.shape[0], :]
            else:
                noise = self.theano_rng.normal(input_.shape[0:2])
            noise = tensor.shape_padright(2)
        else:
            if self.noise_batch_size is not None:
                noise = self.parameters[0][:input_.shape[0], :, :, :]
            else:
                noise = self.theano_rng.normal(input_.shape)
        kl = (
            self.prior_noise_level - noise_level
            + 0.5 * (
                tensor.exp(2 * noise_level)
                + (average - self.prior_mean) ** 2
                ) / tensor.exp(2 * self.prior_noise_level)
            - 0.5
            )
        application_call.add_auxiliary_variable(kl, roles=[NITS], name='nits')
        return input_ + self.noise_rate * tensor.exp(noise_level) * noise

    # Needed for the Feedforward interface.
    @property
    def output_dim(self):
        return self.input_dim

    # The following properties allow for BatchNormalization bricks
    # to be used directly inside of a ConvolutionalSequence.
    @property
#.........这里部分代码省略.........
开发者ID:davidbau,项目名称:net-intent,代码行数:103,代码来源:noisy.py

示例11: NoisyConvolutional

# 需要导入模块: from blocks.bricks.conv import Convolutional [as 别名]
# 或者: from blocks.bricks.conv.Convolutional import apply [as 别名]
class NoisyConvolutional(Initializable, Feedforward, Random):
    """Convolutional transformation sent through a learned noisy channel.

    Parameters (same as Convolutional)
    """
    @lazy(allocation=[
        'filter_size', 'num_filters', 'num_channels', 'noise_batch_size'])
    def __init__(self, filter_size, num_filters, num_channels, noise_batch_size,
                 image_size=(None, None), step=(1, 1), border_mode='valid',
                 tied_biases=True,
                 prior_mean=0, prior_noise_level=0, **kwargs):
        self.convolution = Convolutional()
        self.mask = Convolutional(name='mask')
        children = [self.convolution, self.mask]
        kwargs.setdefault('children', []).extend(children)
        super(NoisyConvolutional, self).__init__(**kwargs)
        self.filter_size = filter_size
        self.num_filters = num_filters
        self.num_channels = num_channels
        self.noise_batch_size = noise_batch_size
        self.image_size = image_size
        self.step = step
        self.border_mode = border_mode
        self.tied_biases = tied_biases
        self.prior_mean = prior_mean
        self.prior_noise_level = prior_noise_level

    def _push_allocation_config(self):
        self.convolution.filter_size = self.filter_size
        self.convolution.num_filters = self.num_filters
        self.convolution.num_channels = self.num_channels
        # self.convolution.batch_size = self.batch_size
        self.convolution.image_size = self.image_size
        self.convolution.step = self.step
        self.convolution.border_mode = self.border_mode
        self.convolution.tied_biases = self.tied_biases
        self.mask.filter_size = (1, 1)
        self.mask.num_filters = self.num_filters
        self.mask.num_channels = self.num_filters
        # self.mask.batch_size = self.batch_size
        self.mask.image_size = self.convolution.get_dim('output')[1:]
        # self.mask.step = self.step
        # self.mask.border_mode = self.border_mode
        self.mask.tied_biases = self.tied_biases

    def _allocate(self):
        out_shape = self.convolution.get_dim('output')
        N = shared_floatx_zeros((self.noise_batch_size,) + out_shape, name='N')
        add_role(N, NOISE)
        self.parameters.append(N)

    @application(inputs=['input_'], outputs=['output'])
    def apply(self, input_, application_call):
        """Apply the linear transformation followed by masking with noise.
        Parameters
        ----------
        input_ : :class:`~tensor.TensorVariable`
            The input on which to apply the transformations
        Returns
        -------
        output : :class:`~tensor.TensorVariable`
            The transformed input
        """
        from theano.printing import Print

        pre_noise = self.convolution.apply(input_)
        # noise_level = self.mask.apply(input_)
        noise_level = (self.prior_noise_level -
                tensor.clip(self.mask.apply(pre_noise), -16, 16))
        noise_level = copy_and_tag_noise(
                noise_level, self, LOG_SIGMA, 'log_sigma')
        # Allow incomplete batches by just taking the noise that is needed
        noise = self.parameters[0][:noise_level.shape[0], :, :, :]
        # noise = self.theano_rng.normal(noise_level.shape)
        kl = (
            self.prior_noise_level - noise_level 
            + 0.5 * (
                tensor.exp(2 * noise_level)
                + (pre_noise - self.prior_mean) ** 2
                ) / tensor.exp(2 * self.prior_noise_level)
            - 0.5
            )
        application_call.add_auxiliary_variable(kl, roles=[NITS], name='nits')
        return pre_noise + tensor.exp(noise_level) * noise

    def get_dim(self, name):
        if name == 'input_':
            return self.convolution.get_dim(name)
        if name == 'output':
            return self.convolution.get_dim(name)
        if name == 'nits':
            return self.convolution.get_dim('output')
        return super(NoisyConvolutional, self).get_dim(name)

    @property
    def num_output_channels(self):
        return self.num_filters
开发者ID:davidbau,项目名称:net-intent,代码行数:99,代码来源:noisy.py


注:本文中的blocks.bricks.conv.Convolutional.apply方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。