当前位置: 首页>>代码示例>>Python>>正文


Python AttrDict.src_ph_vars方法代码示例

本文整理汇总了Python中attrdict.AttrDict.src_ph_vars方法的典型用法代码示例。如果您正苦于以下问题:Python AttrDict.src_ph_vars方法的具体用法?Python AttrDict.src_ph_vars怎么用?Python AttrDict.src_ph_vars使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在attrdict.AttrDict的用法示例。


在下文中一共展示了AttrDict.src_ph_vars方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _construct_tensorflow_feed_data

# 需要导入模块: from attrdict import AttrDict [as 别名]
# 或者: from attrdict.AttrDict import src_ph_vars [as 别名]
def _construct_tensorflow_feed_data(dfs, cube, iter_dims,
    nr_of_input_staging_areas):

    FD = AttrDict()
    # https://github.com/bcj/AttrDict/issues/34
    FD._setattr('_sequence_type', list)
    # Reference local staging_areas
    FD.local = local = AttrDict()
    # https://github.com/bcj/AttrDict/issues/34
    local._setattr('_sequence_type', list)

    # Create placholder variables for source counts
    FD.src_ph_vars = AttrDict({
        n: tf.placeholder(dtype=tf.int32, shape=(), name=n)
        for n in ['nsrc'] + mbu.source_nr_vars()})

    # Create placeholder variables for properties
    FD.property_ph_vars = AttrDict({
        n: tf.placeholder(dtype=p.dtype, shape=(), name=n)
        for n, p in cube.properties().iteritems() })

    #========================================================
    # Determine which arrays need feeding once/multiple times
    #========================================================

    # Take all arrays flagged as input
    input_arrays = [a for a in cube.arrays().itervalues()
                    if 'input' in a.tags]

    src_data_sources, feed_many, feed_once = _partition(iter_dims,
                                                        input_arrays)

    #=====================================
    # Descriptor staging area
    #=====================================

    local.descriptor = create_staging_area_wrapper('descriptors',
        ['descriptor'], dfs)

    #===========================================
    # Staging area for multiply fed data sources
    #===========================================

    # Create the staging_area for holding the feed many input
    local.feed_many = [create_staging_area_wrapper('feed_many_%d' % i,
                ['descriptor'] + [a.name for a in feed_many], dfs)
            for i in range(nr_of_input_staging_areas)]

    #=================================================
    # Staging areas for each radio source data sources
    #=================================================

    # Create the source array staging areas
    local.sources = { src_nr_var: [
            create_staging_area_wrapper('%s_%d' % (src_type, i),
            [a.name for a in src_data_sources[src_nr_var]], dfs)
            for i in range(nr_of_input_staging_areas)]

        for src_type, src_nr_var in source_var_types().iteritems()
    }

    #======================================
    # The single output staging_area
    #======================================

    local.output = create_staging_area_wrapper('output',
        ['descriptor', 'model_vis', 'chi_squared'], dfs)

    #=================================================
    # Create tensorflow variables which are
    # fed only once via an assign operation
    #=================================================

    def _make_feed_once_tuple(array):
        dtype = dfs[array.name].dtype

        ph = tf.placeholder(dtype=dtype,
            name=a.name + "_placeholder")

        var = tf.Variable(tf.zeros(shape=(1,), dtype=dtype),
            validate_shape=False,
            name=array.name)

        op = tf.assign(var, ph, validate_shape=False)
        #op = tf.Print(op, [tf.shape(var), tf.shape(op)],
        #    message="Assigning {}".format(array.name))

        return FeedOnce(ph, var, op)

    # Create placeholders, variables and assign operators
    # for data sources that we will only feed once
    local.feed_once = { a.name : _make_feed_once_tuple(a)
        for a in feed_once }

    #=======================================================
    # Construct the list of data sources that need feeding
    #=======================================================

    # Data sources from input staging_areas
    src_sa = [q for sq in local.sources.values() for q in sq]
#.........这里部分代码省略.........
开发者ID:ska-sa,项目名称:montblanc,代码行数:103,代码来源:RimeSolver.py


注:本文中的attrdict.AttrDict.src_ph_vars方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。