当前位置: 首页>>代码示例>>Python>>正文


Python AttrDict.n_context方法代码示例

本文整理汇总了Python中attrdict.AttrDict.n_context方法的典型用法代码示例。如果您正苦于以下问题:Python AttrDict.n_context方法的具体用法?Python AttrDict.n_context怎么用?Python AttrDict.n_context使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在attrdict.AttrDict的用法示例。


在下文中一共展示了AttrDict.n_context方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: initialize_globals

# 需要导入模块: from attrdict import AttrDict [as 别名]
# 或者: from attrdict.AttrDict import n_context [as 别名]
def initialize_globals():
    c = AttrDict()

    # CPU device
    c.cpu_device = '/cpu:0'

    # Available GPU devices
    c.available_devices = get_available_gpus()

    # If there is no GPU available, we fall back to CPU based operation
    if not c.available_devices:
        c.available_devices = [c.cpu_device]

    # Set default dropout rates
    if FLAGS.dropout_rate2 < 0:
        FLAGS.dropout_rate2 = FLAGS.dropout_rate
    if FLAGS.dropout_rate3 < 0:
        FLAGS.dropout_rate3 = FLAGS.dropout_rate
    if FLAGS.dropout_rate6 < 0:
        FLAGS.dropout_rate6 = FLAGS.dropout_rate

    # Set default checkpoint dir
    if not FLAGS.checkpoint_dir:
        FLAGS.checkpoint_dir = xdg.save_data_path(os.path.join('deepspeech', 'checkpoints'))

    if FLAGS.load not in ['last', 'best', 'init', 'auto']:
        FLAGS.load = 'auto'

    # Set default summary dir
    if not FLAGS.summary_dir:
        FLAGS.summary_dir = xdg.save_data_path(os.path.join('deepspeech', 'summaries'))

    # Standard session configuration that'll be used for all new sessions.
    c.session_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=FLAGS.log_placement,
                                      inter_op_parallelism_threads=FLAGS.inter_op_parallelism_threads,
                                      intra_op_parallelism_threads=FLAGS.intra_op_parallelism_threads)

    c.alphabet = Alphabet(os.path.abspath(FLAGS.alphabet_config_path))

    # Geometric Constants
    # ===================

    # For an explanation of the meaning of the geometric constants, please refer to
    # doc/Geometry.md

    # Number of MFCC features
    c.n_input = 26 # TODO: Determine this programmatically from the sample rate

    # The number of frames in the context
    c.n_context = 9 # TODO: Determine the optimal value using a validation data set

    # Number of units in hidden layers
    c.n_hidden = FLAGS.n_hidden

    c.n_hidden_1 = c.n_hidden

    c.n_hidden_2 = c.n_hidden

    c.n_hidden_5 = c.n_hidden

    # LSTM cell state dimension
    c.n_cell_dim = c.n_hidden

    # The number of units in the third layer, which feeds in to the LSTM
    c.n_hidden_3 = c.n_cell_dim

    # Units in the sixth layer = number of characters in the target language plus one
    c.n_hidden_6 = c.alphabet.size() + 1 # +1 for CTC blank label

    # Size of audio window in samples
    c.audio_window_samples = FLAGS.audio_sample_rate * (FLAGS.feature_win_len / 1000)

    # Stride for feature computations in samples
    c.audio_step_samples = FLAGS.audio_sample_rate * (FLAGS.feature_win_step / 1000)

    if FLAGS.one_shot_infer:
        if not os.path.exists(FLAGS.one_shot_infer):
            log_error('Path specified in --one_shot_infer is not a valid file.')
            exit(1)

    ConfigSingleton._config = c # pylint: disable=protected-access
开发者ID:lissyx,项目名称:DeepSpeech,代码行数:83,代码来源:config.py

示例2: initialize_globals

# 需要导入模块: from attrdict import AttrDict [as 别名]
# 或者: from attrdict.AttrDict import n_context [as 别名]
def initialize_globals():
    c = AttrDict()

    # ps and worker hosts required for p2p cluster setup
    FLAGS.ps_hosts = list(filter(len, FLAGS.ps_hosts.split(',')))
    FLAGS.worker_hosts = list(filter(len, FLAGS.worker_hosts.split(',')))

    # Create a cluster from the parameter server and worker hosts.
    c.cluster = tf.train.ClusterSpec({'ps': FLAGS.ps_hosts, 'worker': FLAGS.worker_hosts})

    # The absolute number of computing nodes - regardless of cluster or single mode
    num_workers = max(1, len(FLAGS.worker_hosts))

    # If replica numbers are negative, we multiply their absolute values with the number of workers
    if FLAGS.replicas < 0:
        FLAGS.replicas = num_workers * -FLAGS.replicas
    if FLAGS.replicas_to_agg < 0:
        FLAGS.replicas_to_agg = num_workers * -FLAGS.replicas_to_agg

    # The device path base for this node
    c.worker_device = '/job:%s/task:%d' % (FLAGS.job_name, FLAGS.task_index)

    # This node's CPU device
    c.cpu_device = c.worker_device + '/cpu:0'

    # This node's available GPU devices
    c.available_devices = [c.worker_device + gpu for gpu in get_available_gpus()]

    # If there is no GPU available, we fall back to CPU based operation
    if 0 == len(c.available_devices):
        c.available_devices = [c.cpu_device]

    # Set default dropout rates
    if FLAGS.dropout_rate2 < 0:
        FLAGS.dropout_rate2 = FLAGS.dropout_rate
    if FLAGS.dropout_rate3 < 0:
        FLAGS.dropout_rate3 = FLAGS.dropout_rate
    if FLAGS.dropout_rate6 < 0:
        FLAGS.dropout_rate6 = FLAGS.dropout_rate

    # Set default checkpoint dir
    if len(FLAGS.checkpoint_dir) == 0:
        FLAGS.checkpoint_dir = xdg.save_data_path(os.path.join('deepspeech','checkpoints'))

    # Set default summary dir
    if len(FLAGS.summary_dir) == 0:
        FLAGS.summary_dir = xdg.save_data_path(os.path.join('deepspeech','summaries'))

    # Standard session configuration that'll be used for all new sessions.
    c.session_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=FLAGS.log_placement,
                                      inter_op_parallelism_threads=FLAGS.inter_op_parallelism_threads,
                                      intra_op_parallelism_threads=FLAGS.intra_op_parallelism_threads)

    c.alphabet = Alphabet(os.path.abspath(FLAGS.alphabet_config_path))

    # Geometric Constants
    # ===================

    # For an explanation of the meaning of the geometric constants, please refer to
    # doc/Geometry.md

    # Number of MFCC features
    c.n_input = 26 # TODO: Determine this programmatically from the sample rate

    # The number of frames in the context
    c.n_context = 9 # TODO: Determine the optimal value using a validation data set

    # Number of units in hidden layers
    c.n_hidden = FLAGS.n_hidden

    c.n_hidden_1 = c.n_hidden

    c.n_hidden_2 = c.n_hidden

    c.n_hidden_5 = c.n_hidden

    # LSTM cell state dimension
    c.n_cell_dim = c.n_hidden

    # The number of units in the third layer, which feeds in to the LSTM
    c.n_hidden_3 = c.n_cell_dim

    # Units in the sixth layer = number of characters in the target language plus one
    c.n_hidden_6 = c.alphabet.size() + 1 # +1 for CTC blank label

    # Queues that are used to gracefully stop parameter servers.
    # Each queue stands for one ps. A finishing worker sends a token to each queue before joining/quitting.
    # Each ps will dequeue as many tokens as there are workers before joining/quitting.
    # This ensures parameter servers won't quit, if still required by at least one worker and
    # also won't wait forever (like with a standard `server.join()`).
    done_queues = []
    for i, ps in enumerate(FLAGS.ps_hosts):
        # Queues are hosted by their respective owners
        with tf.device('/job:ps/task:%d' % i):
            done_queues.append(tf.FIFOQueue(1, tf.int32, shared_name=('queue%i' % i)))

    # Placeholder to pass in the worker's index as token
    c.token_placeholder = tf.placeholder(tf.int32)

    # Enqueue operations for each parameter server
#.........这里部分代码省略.........
开发者ID:gulshan-mittal,项目名称:DeepSpeech,代码行数:103,代码来源:config.py


注:本文中的attrdict.AttrDict.n_context方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。