当前位置: 首页>>代码示例>>Python>>正文


Python NEB.distribute方法代码示例

本文整理汇总了Python中ase.neb.NEB.distribute方法的典型用法代码示例。如果您正苦于以下问题:Python NEB.distribute方法的具体用法?Python NEB.distribute怎么用?Python NEB.distribute使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ase.neb.NEB的用法示例。


在下文中一共展示了NEB.distribute方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: execute_one_neb

# 需要导入模块: from ase.neb import NEB [as 别名]
# 或者: from ase.neb.NEB import distribute [as 别名]
    def execute_one_neb(self, n_cur, to_run, climb=False, many_steps=False):
        '''Internal method which executes one NEB optimization.'''
        self.iteration += 1
        # First we copy around all the images we are not using in this
        # neb (for reproducability purposes)
        if self.world.rank == 0:
            for i in range(n_cur):
                if i not in to_run[1: -1]:
                    filename = '%s%03d.traj' % (self.prefix, i)
                    self.all_images[i].write(filename)
                    filename_ref = self.iter_folder + \
                        '/%s%03diter%03d.traj' % (self.prefix, i,
                                                  self.iteration)
                    if os.path.isfile(filename):
                        shutil.copy2(filename, filename_ref)
        if self.world.rank == 0:
            print('Now starting iteration %d on ' % self.iteration, to_run)
        # Attach calculators to all the images we will include in the NEB
        self.attach_calculators([self.all_images[i] for i in to_run[1: -1]])
        neb = NEB([self.all_images[i] for i in to_run],
                  k=[self.k[i] for i in to_run[0:-1]],
                  method=self.method,
                  parallel=self.parallel,
                  remove_rotation_and_translation=self
                  .remove_rotation_and_translation,
                  climb=climb)

        # Do the actual NEB calculation
        qn = self.optimizer(neb,
                            logfile=self.iter_folder +
                            '/%s_log_iter%03d.log' % (self.prefix,
                                                      self.iteration))

        # Find the ranks which are masters for each their calculation
        if self.parallel:
            nneb = to_run[0]
            nim = len(to_run) - 2
            n = self.world.size // nim      # number of cpu's per image
            j = 1 + self.world.rank // n    # my image number
            assert nim * n == self.world.size
            traj = Trajectory('%s%03d.traj' % (self.prefix, j + nneb), 'w',
                              self.all_images[j + nneb],
                              master=(self.world.rank % n == 0))
            filename_ref = self.iter_folder + \
                '/%s%03diter%03d.traj' % (self.prefix,
                                          j + nneb, self.iteration)
            trajhist = Trajectory(filename_ref, 'w',
                                  self.all_images[j + nneb],
                                  master=(self.world.rank % n == 0))
            qn.attach(traj)
            qn.attach(trajhist)
        else:
            num = 1
            for i, j in enumerate(to_run[1: -1]):
                filename_ref = self.iter_folder + \
                    '/%s%03diter%03d.traj' % (self.prefix, j, self.iteration)
                trajhist = Trajectory(filename_ref, 'w', self.all_images[j])
                qn.attach(seriel_writer(trajhist, i, num).write)

                traj = Trajectory('%s%03d.traj' % (self.prefix, j), 'w',
                                  self.all_images[j])
                qn.attach(seriel_writer(traj, i, num).write)
                num += 1

        if isinstance(self.maxsteps, (list, tuple)) and many_steps:
            steps = self.maxsteps[1]
        elif isinstance(self.maxsteps, (list, tuple)) and not many_steps:
            steps = self.maxsteps[0]
        else:
            steps = self.maxsteps

        if isinstance(self.fmax, (list, tuple)) and many_steps:
            fmax = self.fmax[1]
        elif isinstance(self.fmax, (list, tuple)) and not many_steps:
            fmax = self.fmax[0]
        else:
            fmax = self.fmax
        qn.run(fmax=fmax, steps=steps)

        # Remove the calculators and replace them with single
        # point calculators and update all the nodes for
        # preperration for next iteration
        neb.distribute = types.MethodType(store_E_and_F_in_spc, neb)
        neb.distribute()
开发者ID:rchiechi,项目名称:QuantumParse,代码行数:86,代码来源:autoneb.py


注:本文中的ase.neb.NEB.distribute方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。