当前位置: 首页>>代码示例>>Python>>正文


Python Agent.output_dir_path方法代码示例

本文整理汇总了Python中agent.Agent.output_dir_path方法的典型用法代码示例。如果您正苦于以下问题:Python Agent.output_dir_path方法的具体用法?Python Agent.output_dir_path怎么用?Python Agent.output_dir_path使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在agent.Agent的用法示例。


在下文中一共展示了Agent.output_dir_path方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run

# 需要导入模块: from agent import Agent [as 别名]
# 或者: from agent.Agent import output_dir_path [as 别名]
def run(options):
    # get option variables #
    final_mode        = options.final_mode
    combi_mode        = options.combination_mode
    change_route_mode = options.change_route

    # load history data
    from_date                = '2004/01/01'
    to_date                  = '2016/01/01'
    oil_price_history_data   = load_monthly_history_data(from_date, to_date)
    world_scale_history_data = load_world_scale_history_data(from_date, to_date)
    flat_rate_history_data   = load_flat_rate_history_data(from_date, to_date)

    # generate sinario
    base_sinario = Sinario(oil_price_history_data)
    # generate world scale
    world_scale  = WorldScale(world_scale_history_data)
    # generate flat rate
    flat_rate    = FlatRate(flat_rate_history_data)
    #flat_rate.draw_multiple_flat_rates()

    # draw test market prices
    #draw_market_prices(base_sinario, world_scale, flat_rate)

    # generate significant motecalro sinario
    ## {'high': 19917289, 'low': 19962436, 'stage': 19935671}
    scenario_seeds = {'high': 19917289, 'low': 19962436, 'stage': 19935671}
    if scenario_seeds is None:
        scenario_seeds = get_significant_scenarios_seeds(base_sinario, world_scale, flat_rate)

    '''
    # draw significant scenario
    draw_significant_scenario(base_sinario, world_scale, flat_rate, scenario_seeds)
    print 'scenario_seeds:'
    print scenario_seeds
    '''
    
    # initialize directory 
    output_dir_path = "%s/%s" % (AGNET_LOG_DIR_PATH, generate_timestamp())
    initializeDirHierarchy(output_dir_path)

    # retrofit mode
    # load components list
    hull_list           = load_hull_list()
    engine_list         = load_engine_list()
    propeller_list      = load_propeller_list()

    # bow test
    #bow_test()

    simulation_duration_years = VESSEL_LIFE_TIME
    scenario_mode = DERIVE_SINARIO_MODE['binomial']

    if final_mode == 'route_fluc':
        # init market fluc as middle(stage)
        fixed_seed = scenario_seeds['stage']
        np.random.seed(fixed_seed)
        generate_market_scenarios(base_sinario, world_scale, flat_rate, scenario_mode, simulation_duration_years)
        
        # init parameters
        oilprice_mode        = "oilprice_middle"
        change_route_periods = CHANGE_ROUTE_PERIODS
        bf_mode              = 'rough'
        case_mode            = 'middle'
        designs              = RETROFIT_DESIGNS[bf_mode]
        base_design_key      = designs[case_mode]
        retrofit_design_key  = RETROFIT_DESIGNS_FOR_ROUTE_CHANGE[bf_mode][case_mode]
        retrofit_mode        = RETROFIT_MODE['route_change']

        devided_periods      = np.array_split(change_route_periods, PROC_NUM)
        agent                = Agent(base_sinario,
                                     world_scale,
                                     flat_rate,
                                     retrofit_mode,
                                     scenario_mode, BF_MODE[bf_mode])
        agent.change_sea_flag = True
        agent.output_dir_path = output_dir_path
        
        '''
        agent.calc_flexible_design_m_route_change(0, hull_list, engine_list, propeller_list, simulation_duration_years, devided_periods, base_design_key, retrofit_design_key, retrofit_mode)
        sys.exit()
        '''

        # multi processing #
        # initialize
        pool                  = mp.Pool(PROC_NUM)
        callback              = [pool.apply_async(agent.calc_flexible_design_m_route_change, args=(index, hull_list, engine_list, propeller_list, simulation_duration_years, devided_periods, base_design_key, retrofit_design_key, retrofit_mode)) for index in xrange(PROC_NUM)]

        pool.close()
        pool.join()
        # multi processing #

    elif final_mode == 'route_fluc_monte':
        # init market fluc as middle(stage)
        fixed_seed    = scenario_seeds['stage']
        np.random.seed(fixed_seed)
        generate_market_scenarios(base_sinario, world_scale, flat_rate, scenario_mode, simulation_duration_years)
        
        # init parameters
        oilprice_mode        = "oilprice_middle"
#.........这里部分代码省略.........
开发者ID:tstomoki,项目名称:navigation_simulator,代码行数:103,代码来源:main_fast.py

示例2: run

# 需要导入模块: from agent import Agent [as 别名]
# 或者: from agent.Agent import output_dir_path [as 别名]
def run(options):
    print_with_notice("Program started at %s" % (detailed_datetime_to_human(datetime.datetime.now())))

    # get option variables #
    initial_hull_id                      = options.hull_id
    initial_engine_id                    = options.engine_id
    initial_propeller_id                 = options.propeller_id
    initial_design                       = options.initial_design
    create_combination                   = options.create_combination
    result_visualize_mode                = options.result_visualize_mode
    result_dir_path                      = options.result_dir_path
    no_retrofit_ignore                   = options.no_retrofit_ignore
    propeller_retrofit_ignore            = options.propeller_retrofit_ignore
    propeller_and_engine_retrofit_ignore = options.propeller_and_engine_retrofit_ignore
    retrofit_mode                        = options.retrofit_mode
    final_mode                           = options.final_mode

    # load history data
    from_date = '2004/01/01'
    to_date = '2015/01/01'
    oil_price_history_data   = load_monthly_history_data(from_date, to_date)
    world_scale_history_data = load_world_scale_history_data()
    flat_rate_history_data   = load_flat_rate_history_data()

    # generate sinario
    base_sinario = Sinario(oil_price_history_data)
    # generate world scale
    world_scale  = WorldScale(world_scale_history_data)
    # generate flat rate
    #flat_rate    = FlatRate(flat_rate_history_data)
    flat_rate    = FlatRate(flat_rate_history_data)
    #flat_rate.draw_multiple_flat_rates()
    
    # draw multiple scenario part #
    # base_sinario.draw_multiple_scenarios(world_scale)

    # draw sfoc features
    draw_engine_sfoc()

    # correlation analysis #
    analyze_correlation(oil_price_history_data, world_scale_history_data,
                        {'start': datetime.datetime(2009, 1, 1), 'end': datetime.datetime.now()})
    # initialize directory 
    output_dir_path = "%s/%s" % (AGNET_LOG_DIR_PATH, generate_timestamp())
    initializeDirHierarchy(output_dir_path)

    if result_visualize_mode:
        if (initial_engine_id is None) or (initial_propeller_id is None):
            print "Error: please input engine and propeller ids"
        else:
            compare_hull_design(npv_result, initial_engine_id, initial_propeller_id)
            
        output_result = {}
        for c_key, npv_array in npv_result.items():
            if not output_result.has_key(c_key):
                output_result[c_key] = {}
            output_result[c_key]['npv'] = np.average(npv_array)
            output_result[c_key]['std'] = np.std(npv_array)

        display_sorted_result(output_result, 3)
        sys.exit()

        # output result
        output_mode_str  = re.compile(r'(mode.+)').search(result_dir_path).groups()[0]
        output_json_dir  = "%s/json" % (RESULT_DIR_PATH)
        initializeDirHierarchy(output_json_dir)
        output_json_path = "%s/%s.json" % (output_json_dir, output_mode_str)
        write_file_as_json(output_result, output_json_path)
        
        column_names = ['c_key', 'ave_npv', 'std']
        write_data = [ [c_key, val['npv'], val['std']] for c_key, val in output_result.items()]
        write_simple_array_csv(column_names, write_data, './test.csv')
        sys.exit()

        # display maximum_designs
        draw_NPV_for_each3D(results_data, output_dir_path, [0, 900], [190000000, 206000000])
        display_maximum_designs(results_data, 10)
        draw_whole_NPV(results_data, output_dir_path)
        draw_each_NPV_distribution(results_data, output_dir_path)

        # for narrow_down result
        output_dir_path = "%s/visualization/narrow_down" % (RESULT_DIR_PATH)
        initializeDirHierarchy(output_dir_path)
        json_dirpath    = NARROW_DOWN_RESULT_PATH
        if not os.path.exists(json_dirpath):
            print "abort: there is no such directory, %s" % (json_dirpath)
            sys.exit()
        files = os.listdir(json_dirpath)

        #draw_NPV_histogram_m(json_filepath, output_filepath)

        results_data = {}
        for target_filename in files:
            try:
                combination_key, = re.compile(r'(H.+)\.json').search(target_filename).groups()
            except:
                continue
            target_filepath               = "%s/%s" % (json_dirpath, target_filename)
            results_data[combination_key] = load_json_file(target_filepath)

#.........这里部分代码省略.........
开发者ID:tstomoki,项目名称:navigation_simulator,代码行数:103,代码来源:main.py


注:本文中的agent.Agent.output_dir_path方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。