本文整理汇总了Python中SUAVE.Structure.Data.wt_furnish方法的典型用法代码示例。如果您正苦于以下问题:Python Data.wt_furnish方法的具体用法?Python Data.wt_furnish怎么用?Python Data.wt_furnish使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SUAVE.Structure.Data
的用法示例。
在下文中一共展示了Data.wt_furnish方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from SUAVE.Structure import Data [as 别名]
# 或者: from SUAVE.Structure.Data import wt_furnish [as 别名]
def main():
vehicle = SUAVE.Vehicle()# Create the vehicle for testing
# Parameters Required
vehicle.envelope.ultimate_load = 3.5 # Ultimate load
vehicle.mass_properties.max_takeoff = 79015.8 * Units.kilograms # Maximum takeoff weight in kilograms
vehicle.mass_properties.max_zero_fuel = 79015.8 * 0.9 * Units.kilograms # Maximum zero fuel weight in kilograms
vehicle.envelope.limit_load = 1.5 # Limit Load
turbofan = SUAVE.Components.Propulsors.TurboFanPASS()
turbofan.tag = 'Turbo Fan'
turbofan.number_of_engines = 2. # Number of engines on the aircraft
turbofan.thrust.design = 1000. * Units.newton # Define Thrust in Newtons
vehicle.append_component(turbofan)
vehicle.passengers = 170. # Number of passengers
vehicle.mass_properties.cargo = 0. * Units.kilogram # Mass of cargo
vehicle.systems.control = "fully powered" # Specify fully powered, partially powered or anything else is fully aerodynamic
vehicle.systems.accessories = "medium-range" # Specify what type of aircraft you have
vehicle.reference_area = 124.862 * Units.meter**2 # Wing gross area in square meters
wing = SUAVE.Components.Wings.Wing()
wing.tag = 'Main Wing'
wing.spans.projected = 50. * Units.meter # Span in meters
wing.taper = 0.2 # Taper ratio
wing.thickness_to_chord = 0.08 # Thickness-to-chord ratio
wing.sweep = .4363323 * Units.rad # sweep angle in degrees
wing.chords.root = 15. * Units.meter # Wing root chord length
wing.chords.mean_aerodynamic = 10. * Units.meters # Length of the mean aerodynamic chord of the wing
wing.position = [20,0,0] * Units.meters # Location of main wing from origin of the vehicle
wing.aerodynamic_center = [3,0,0] * Units.meters # Location of aerodynamic center from origin of the main wing
vehicle.append_component(wing)
fuselage = SUAVE.Components.Fuselages.Fuselage()
fuselage.tag = 'Fuselage'
fuselage.areas.wetted = 688.64 * Units.meter**2 # Fuselage wetted area
fuselage.differential_pressure = 55960.5 * Units.pascal # Maximum differential pressure
fuselage.width = 4. * Units.meter # Width of the fuselage
fuselage.heights.maximum = 4. * Units.meter # Height of the fuselage
fuselage.lengths.total = 58.4 * Units.meter # Length of the fuselage
fuselage.number_coach_seats = 200.
vehicle.append_component(fuselage)
wing = SUAVE.Components.Wings.Wing()
wing.tag = 'Horizontal Stabilizer'
wing.areas.reference = 75. * Units.meters**2 # Area of the horizontal tail
wing.spans.projected = 15. * Units.meters # Span of the horizontal tail
wing.sweep = 38. * Units.deg # Sweep of the horizontal tail
wing.chords.mean_aerodynamic = 5. * Units.meters # Length of the mean aerodynamic chord of the horizontal tail
wing.thickness_to_chord = 0.07 # Thickness-to-chord ratio of the horizontal tail
wing.areas.exposed = 199.7792 # Exposed area of the horizontal tail
wing.areas.wetted = 249.724 # Wetted area of the horizontal tail
wing.position = [45,0,0] # Location of horizontal tail from origin of the vehicle
wing.aerodynamic_center = [3,0,0] # Location of aerodynamic center from origin of the horizontal tail
vehicle.append_component(wing)
wing = SUAVE.Components.Wings.Wing()
wing.tag = 'Vertical Stabilizer'
wing.areas.reference = 60. * Units.meters**2 # Area of the vertical tail
wing.spans.projected = 15. * Units.meters # Span of the vertical tail
wing.thickness_to_chord = 0.07 # Thickness-to-chord ratio of the vertical tail
wing.sweep = 40. * Units.deg # Sweep of the vertical tail
wing.t_tail = "false" # Set to "yes" for a T-tail
vehicle.append_component(wing)
weight = Tube_Wing.empty(vehicle)
actual = Data()
actual.payload = 17349.9081525
actual.pax = 15036.5870655
actual.bag = 2313.321087
actual.fuel = -6993.89102491
actual.empty = 68659.7828724
actual.wing = 27694.192985
actual.fuselage = 11504.5186408
actual.propulsion = 88.3696093424
actual.landing_gear = 3160.632
actual.systems = 16655.7076511
actual.wt_furnish = 7466.1304102
actual.horizontal_tail = 2191.30720639
actual.vertical_tail = 5260.75341411
actual.rudder = 2104.30136565
error = Data()
error.payload = (actual.payload - weight.payload)/actual.payload
error.pax = (actual.pax - weight.pax)/actual.pax
error.bag = (actual.bag - weight.bag)/actual.bag
error.fuel = (actual.fuel - weight.fuel)/actual.fuel
error.empty = (actual.empty - weight.empty)/actual.empty
error.wing = (actual.wing - weight.wing)/actual.wing
error.fuselage = (actual.fuselage - weight.fuselage)/actual.fuselage
error.propulsion = (actual.propulsion - weight.propulsion)/actual.propulsion
error.landing_gear = (actual.landing_gear - weight.landing_gear)/actual.landing_gear
error.systems = (actual.systems - weight.systems)/actual.systems
error.wt_furnish = (actual.wt_furnish - weight.wt_furnish)/actual.wt_furnish
error.horizontal_tail = (actual.horizontal_tail - weight.horizontal_tail)/actual.horizontal_tail
error.vertical_tail = (actual.vertical_tail - weight.vertical_tail)/actual.vertical_tail
error.rudder = (actual.rudder - weight.rudder)/actual.rudder
for k,v in error.items():
#.........这里部分代码省略.........
示例2: systems
# 需要导入模块: from SUAVE.Structure import Data [as 别名]
# 或者: from SUAVE.Structure.Data import wt_furnish [as 别名]
def systems(num_seats, ctrl_type, S_h, S_v, S_gross_w, ac_type):
""" output = SUAVE.Methods.Weights.Correlations.Tube_Wing.systems(num_seats, ctrl_type, S_h, S_v, S_gross_w, ac_type)
Calculate the weight of the different engine systems on the aircraft
Inputs:
num_seats - total number of seats on the aircraft [dimensionless]
ctrl_type - specifies if the control system is fully power, partially powered, or not powered [dimensionless]
S_h - area of the horizontal tail [meters**2]
S_v - area of the vertical tail [meters**2]
S_gross_w - area of the wing [meters**2]
ac_type - determines type of instruments, electronics, and operating items based on type of vehicle [dimensionless]
Outputs:
output - a data dictionary with fields:
wt_flt_ctrl - weight of the flight control system [kilograms]
wt_apu - weight of the apu [kilograms]
wt_hyd_pnu - weight of the hydraulics and pneumatics [kilograms]
wt_instruments - weight of the instruments and navigational equipment [kilograms]
wt_avionics - weight of the avionics [kilograms]
wt_opitems - weight of the optional items based on the type of aircraft [kilograms]
wt_elec - weight of the electrical items [kilograms]
wt_ac - weight of the air conditioning and anti-ice system [kilograms]
wt_furnish - weight of the furnishings in the fuselage [kilograms]
Assumptions:
numbers based on FAA regulations and correlations from previous aircraft
"""
# unpack inputs
sref = S_gross_w / Units.ft**2 # Convert meters squared to ft squared
area_h = S_h / Units.ft**2 # Convert meters squared to ft squared
area_v = S_v / Units.ft**2 # Convert meters squared to ft squared
# process
# Flight Controls Group Wt
if ctrl_type == "fully powered": #fully powered controls
flt_ctrl_scaler = 3.5
elif ctrl_type == "partially powered": #partially powered controls
flt_ctrl_scaler = 2.5
else:
flt_ctrl_scaler = 1.7 # fully aerodynamic controls
flt_ctrl_wt = (flt_ctrl_scaler*(area_h + area_v)) * Units.lb
# APU Group Wt
if num_seats >= 6.:
apu_wt = 7.0 * num_seats *Units.lb
else:
apu_wt = 0.0 * Units.lb #no apu if less than 9 seats
apu_wt = max(apu_wt,70.)
# Hydraulics & Pneumatics Group Wt
hyd_pnu_wt = (0.65 * sref) * Units.lb
# Electrical Group Wt
elec_wt = (13.0 * num_seats) * Units.lb
# Furnishings Group Wt
furnish_wt = ((43.7 - 0.037*min(num_seats,300.))*num_seats + 46.0*num_seats) * Units.lb
if ac_type == "business":
furnish_wt = S_fus * 11.
# Environmental Control
ac_wt = (15.0 * num_seats) * Units.lb
# Instruments, Electronics, Operating Items based on Type of Vehicle
if ac_type == "short-range": # short-range domestic, austere accomodations
instruments_wt = 800.0 * Units.lb
avionics_wt = 900.0 * Units.lb
opitems_wt = 17.0 * num_seats * Units.lb
elif ac_type == "medium-range": #medium-range domestic
instruments_wt = 800.0 * Units.lb
avionics_wt = 900.0 * Units.lb
opitems_wt = 28.0 * num_seats * Units.lb
elif ac_type == "long-range": #long-range overwater
instruments_wt = 1200.0 * Units.lb
avionics_wt = 1500.0 * Units.lb
opitems_wt = 28.0 * num_seats * Units.lb
furnish_wt += 23.0 * num_seats * Units.lb #add aditional seat wt
elif ac_type == "business": #business jet
instruments_wt = 100.0 * Units.lb
avionics_wt = 300.0 * Units.lb
opitems_wt = 28.0 * num_seats * Units.lb
elif ac_type == "cargo": #all cargo
instruments_wt = 800.0 * Units.lb
avionics_wt = 900.0 * Units.lb
elec_wt = 1950.0 * Units.lb # for cargo a/c
opitems_wt = 56.0 * Units.lb
elif ac_type == "commuter": #commuter
instruments_wt = 300.0 * Units.lb
avionics_wt = 500.0 * Units.lb
opitems_wt = 17.0 * num_seats * Units.lb
elif ac_type == "sst": #sst
instruments_wt = 1200.0 * Units.lb
avionics_wt = 1500.0 * Units.lb
opitems_wt = 40.0 * num_seats * Units.lb
furnish_wt += 23.0 * num_seats * Units.lb #add aditional seat wt
else:
instruments_wt = 800.0 * Units.lb
avionics_wt = 900.0 * Units.lb
opitems_wt = 28.0 * num_seats * Units.lb
#.........这里部分代码省略.........