本文整理汇总了Python中SUAVE.Structure.Data.propulsion方法的典型用法代码示例。如果您正苦于以下问题:Python Data.propulsion方法的具体用法?Python Data.propulsion怎么用?Python Data.propulsion使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SUAVE.Structure.Data
的用法示例。
在下文中一共展示了Data.propulsion方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: estimate_take_off_field_length
# 需要导入模块: from SUAVE.Structure import Data [as 别名]
# 或者: from SUAVE.Structure.Data import propulsion [as 别名]
#.........这里部分代码省略.........
# Using semi-empirical method for maximum lift coefficient calculation
from SUAVE.Methods.Aerodynamics.Lift.High_lift_correlations import compute_max_lift_coeff
# Condition to CLmax calculation: 90KTAS @ 10000ft, ISA
p_stall , T_stall , rho_stall , a_stall , mew_stall = atmo.compute_values(10000. * Units.ft)
conditions = Data()
conditions.rho = rho_stall
conditions.mew = mew_stall
conditions.V = 90. * Units.knots
try:
maximum_lift_coefficient, induced_drag_high_lift = compute_max_lift_coeff(config,conditions)
config.maximum_lift_coefficient = maximum_lift_coefficient
except:
raise ValueError, "Maximum lift coefficient calculation error. Please, check inputs"
# ==============================================
# Computing speeds (Vs, V2, 0.7*V2)
# ==============================================
stall_speed = (2 * weight * sea_level_gravity / (rho * reference_area * maximum_lift_coefficient)) ** 0.5
V2_speed = V2_VS_ratio * stall_speed
speed_for_thrust = 0.70 * V2_speed
# ==============================================
# Determining vehicle number of engines
# ==============================================
engine_number = 0.
for propulsor in vehicle.Propulsors : # may have than one propulsor
engine_number += propulsor.no_of_engines
if engine_number == 0:
raise ValueError, "No engine found in the vehicle"
# ==============================================
# Getting engine thrust
# ==============================================
#state = Data()
#state.q = np.atleast_1d(0.5 * rho * speed_for_thrust**2)
#state.g0 = np.atleast_1d(sea_level_gravity)
#state.V = np.atleast_1d(speed_for_thrust)
#state.M = np.atleast_1d(speed_for_thrust/ a_delta_ISA)
#state.T = np.atleast_1d(T_delta_ISA)
#state.p = np.atleast_1d(p)
eta = np.atleast_1d(1.)
conditions = Data()
conditions.freestream = Data()
conditions.propulsion = Data()
conditions.freestream.dynamic_pressure = np.array([np.atleast_1d(0.5 * rho * speed_for_thrust**2)])
conditions.freestream.gravity = np.array([np.atleast_1d(sea_level_gravity)])
conditions.freestream.velocity = np.array([np.atleast_1d(speed_for_thrust)])
conditions.freestream.mach_number = np.array([np.atleast_1d(speed_for_thrust/ a_delta_ISA)])
conditions.freestream.temperature = np.array([np.atleast_1d(T_delta_ISA)])
conditions.freestream.pressure = np.array([np.atleast_1d(p)])
conditions.propulsion.throttle = np.array([np.atleast_1d(1.)])
thrust, mdot, P = vehicle.propulsion_model(eta, conditions) # total thrust
# ==============================================
# Calculate takeoff distance
# ==============================================
# Defining takeoff distance equations coefficients
try:
takeoff_constants = config.takeoff_constants # user defined
except: # default values
takeoff_constants = np.zeros(3)
if engine_number == 2:
takeoff_constants[0] = 857.4
takeoff_constants[1] = 2.476
takeoff_constants[2] = 0.00014
elif engine_number == 3:
takeoff_constants[0] = 667.9
takeoff_constants[1] = 2.343
takeoff_constants[2] = 0.000093
elif engine_number == 4:
takeoff_constants[0] = 486.7
takeoff_constants[1] = 2.282
takeoff_constants[2] = 0.0000705
elif engine_number > 4:
takeoff_constants[0] = 486.7
takeoff_constants[1] = 2.282
takeoff_constants[2] = 0.0000705
print 'The vehicle has more than 4 engines. Using 4 engine correlation. Result may not be correct.'
else:
takeoff_constants[0] = 857.4
takeoff_constants[1] = 2.476
takeoff_constants[2] = 0.00014
print 'Incorrect number of engines: {0:.1f}. Using twin engine correlation.'.format(engine_number)
# Define takeoff index (V2^2 / (T/W)
takeoff_index = V2_speed**2 / (thrust / weight)
# Calculating takeoff field length
takeoff_field_length = 0.
for idx,constant in enumerate(takeoff_constants):
takeoff_field_length += constant * takeoff_index**idx
takeoff_field_length = takeoff_field_length * Units.ft
# return
return takeoff_field_length
示例2: main
# 需要导入模块: from SUAVE.Structure import Data [as 别名]
# 或者: from SUAVE.Structure.Data import propulsion [as 别名]
def main():
vehicle = SUAVE.Vehicle()# Create the vehicle for testing
# Parameters Required
vehicle.envelope.ultimate_load = 3.5 # Ultimate load
vehicle.mass_properties.max_takeoff = 79015.8 * Units.kilograms # Maximum takeoff weight in kilograms
vehicle.mass_properties.max_zero_fuel = 79015.8 * 0.9 * Units.kilograms # Maximum zero fuel weight in kilograms
vehicle.envelope.limit_load = 1.5 # Limit Load
turbofan = SUAVE.Components.Propulsors.TurboFanPASS()
turbofan.tag = 'Turbo Fan'
turbofan.number_of_engines = 2. # Number of engines on the aircraft
turbofan.thrust.design = 1000. * Units.newton # Define Thrust in Newtons
vehicle.append_component(turbofan)
vehicle.passengers = 170. # Number of passengers
vehicle.mass_properties.cargo = 0. * Units.kilogram # Mass of cargo
vehicle.systems.control = "fully powered" # Specify fully powered, partially powered or anything else is fully aerodynamic
vehicle.systems.accessories = "medium-range" # Specify what type of aircraft you have
vehicle.reference_area = 124.862 * Units.meter**2 # Wing gross area in square meters
wing = SUAVE.Components.Wings.Wing()
wing.tag = 'Main Wing'
wing.spans.projected = 50. * Units.meter # Span in meters
wing.taper = 0.2 # Taper ratio
wing.thickness_to_chord = 0.08 # Thickness-to-chord ratio
wing.sweep = .4363323 * Units.rad # sweep angle in degrees
wing.chords.root = 15. * Units.meter # Wing root chord length
wing.chords.mean_aerodynamic = 10. * Units.meters # Length of the mean aerodynamic chord of the wing
wing.position = [20,0,0] * Units.meters # Location of main wing from origin of the vehicle
wing.aerodynamic_center = [3,0,0] * Units.meters # Location of aerodynamic center from origin of the main wing
vehicle.append_component(wing)
fuselage = SUAVE.Components.Fuselages.Fuselage()
fuselage.tag = 'Fuselage'
fuselage.areas.wetted = 688.64 * Units.meter**2 # Fuselage wetted area
fuselage.differential_pressure = 55960.5 * Units.pascal # Maximum differential pressure
fuselage.width = 4. * Units.meter # Width of the fuselage
fuselage.heights.maximum = 4. * Units.meter # Height of the fuselage
fuselage.lengths.total = 58.4 * Units.meter # Length of the fuselage
fuselage.number_coach_seats = 200.
vehicle.append_component(fuselage)
wing = SUAVE.Components.Wings.Wing()
wing.tag = 'Horizontal Stabilizer'
wing.areas.reference = 75. * Units.meters**2 # Area of the horizontal tail
wing.spans.projected = 15. * Units.meters # Span of the horizontal tail
wing.sweep = 38. * Units.deg # Sweep of the horizontal tail
wing.chords.mean_aerodynamic = 5. * Units.meters # Length of the mean aerodynamic chord of the horizontal tail
wing.thickness_to_chord = 0.07 # Thickness-to-chord ratio of the horizontal tail
wing.areas.exposed = 199.7792 # Exposed area of the horizontal tail
wing.areas.wetted = 249.724 # Wetted area of the horizontal tail
wing.position = [45,0,0] # Location of horizontal tail from origin of the vehicle
wing.aerodynamic_center = [3,0,0] # Location of aerodynamic center from origin of the horizontal tail
vehicle.append_component(wing)
wing = SUAVE.Components.Wings.Wing()
wing.tag = 'Vertical Stabilizer'
wing.areas.reference = 60. * Units.meters**2 # Area of the vertical tail
wing.spans.projected = 15. * Units.meters # Span of the vertical tail
wing.thickness_to_chord = 0.07 # Thickness-to-chord ratio of the vertical tail
wing.sweep = 40. * Units.deg # Sweep of the vertical tail
wing.t_tail = "false" # Set to "yes" for a T-tail
vehicle.append_component(wing)
weight = Tube_Wing.empty(vehicle)
actual = Data()
actual.payload = 17349.9081525
actual.pax = 15036.5870655
actual.bag = 2313.321087
actual.fuel = -6993.89102491
actual.empty = 68659.7828724
actual.wing = 27694.192985
actual.fuselage = 11504.5186408
actual.propulsion = 88.3696093424
actual.landing_gear = 3160.632
actual.systems = 16655.7076511
actual.wt_furnish = 7466.1304102
actual.horizontal_tail = 2191.30720639
actual.vertical_tail = 5260.75341411
actual.rudder = 2104.30136565
error = Data()
error.payload = (actual.payload - weight.payload)/actual.payload
error.pax = (actual.pax - weight.pax)/actual.pax
error.bag = (actual.bag - weight.bag)/actual.bag
error.fuel = (actual.fuel - weight.fuel)/actual.fuel
error.empty = (actual.empty - weight.empty)/actual.empty
error.wing = (actual.wing - weight.wing)/actual.wing
error.fuselage = (actual.fuselage - weight.fuselage)/actual.fuselage
error.propulsion = (actual.propulsion - weight.propulsion)/actual.propulsion
error.landing_gear = (actual.landing_gear - weight.landing_gear)/actual.landing_gear
error.systems = (actual.systems - weight.systems)/actual.systems
error.wt_furnish = (actual.wt_furnish - weight.wt_furnish)/actual.wt_furnish
error.horizontal_tail = (actual.horizontal_tail - weight.horizontal_tail)/actual.horizontal_tail
error.vertical_tail = (actual.vertical_tail - weight.vertical_tail)/actual.vertical_tail
error.rudder = (actual.rudder - weight.rudder)/actual.rudder
for k,v in error.items():
#.........这里部分代码省略.........
示例3: __defaults__
# 需要导入模块: from SUAVE.Structure import Data [as 别名]
# 或者: from SUAVE.Structure.Data import propulsion [as 别名]
def __defaults__(self):
self.tag = 'Aerodynamic Segment'
# atmosphere and planet
self.planet = None
self.atmosphere = None
self.start_time = time.gmtime()
# --- Conditions and Unknowns
# user shouldn't change these in an input script
# only used for processing / post processing
# they will be shared with analysis modules and meaningful naming is important
# base matricies
# use a trivial operation to copy the array
ones_1col = np.ones([1,1])
ones_2col = np.ones([1,2])
ones_3col = np.ones([1,3])
# --- Conditions
# setup conditions
conditions = Data()
conditions.frames = Data()
conditions.freestream = Data()
conditions.aerodynamics = Data()
conditions.propulsion = Data()
conditions.weights = Data()
conditions.energies = Data()
self.conditions = conditions
# inertial frame conditions
conditions.frames.inertial = Data()
conditions.frames.inertial.position_vector = ones_3col * 0
conditions.frames.inertial.velocity_vector = ones_3col * 0
conditions.frames.inertial.acceleration_vector = ones_3col * 0
conditions.frames.inertial.gravity_force_vector = ones_3col * 0
conditions.frames.inertial.total_force_vector = ones_3col * 0
conditions.frames.inertial.time = ones_1col * 0
# wind frame conditions
conditions.frames.wind = Data()
conditions.frames.wind.body_rotations = ones_3col * 0 # rotations in [X,Y,Z] -> [phi,theta,psi]
conditions.frames.wind.velocity_vector = ones_3col * 0
conditions.frames.wind.lift_force_vector = ones_3col * 0
conditions.frames.wind.drag_force_vector = ones_3col * 0
conditions.frames.wind.transform_to_inertial = np.empty([0,0,0])
# body frame conditions
conditions.frames.body = Data()
conditions.frames.body.inertial_rotations = ones_3col * 0 # rotations in [X,Y,Z] -> [phi,theta,psi]
conditions.frames.body.thrust_force_vector = ones_3col * 0
conditions.frames.body.transform_to_inertial = np.empty([0,0,0])
# planet frame conditions
conditions.frames.planet = Data()
conditions.frames.planet.start_time = None
conditions.frames.planet.latitude = ones_1col * 0
conditions.frames.planet.longitude = ones_1col * 0
# freestream conditions
conditions.freestream.velocity = ones_1col * 0
conditions.freestream.mach_number = ones_1col * 0
conditions.freestream.pressure = ones_1col * 0
conditions.freestream.temperature = ones_1col * 0
conditions.freestream.density = ones_1col * 0
conditions.freestream.speed_of_sound = ones_1col * 0
conditions.freestream.viscosity = ones_1col * 0
conditions.freestream.altitude = ones_1col * 0
conditions.freestream.gravity = ones_1col * 0
conditions.freestream.reynolds_number = ones_1col * 0
conditions.freestream.dynamic_pressure = ones_1col * 0
# aerodynamics conditions
conditions.aerodynamics.angle_of_attack = ones_1col * 0
conditions.aerodynamics.side_slip_angle = ones_1col * 0
conditions.aerodynamics.roll_angle = ones_1col * 0
conditions.aerodynamics.lift_coefficient = ones_1col * 0
conditions.aerodynamics.drag_coefficient = ones_1col * 0
conditions.aerodynamics.lift_breakdown = Data()
conditions.aerodynamics.drag_breakdown = Data()
# propulsion conditions
conditions.propulsion.throttle = ones_1col * 0
conditions.propulsion.fuel_mass_rate = ones_1col * 0
conditions.propulsion.battery_energy = ones_1col * 0
conditions.propulsion.thrust_breakdown = Data()
# weights conditions
conditions.weights.total_mass = ones_1col * 0
conditions.weights.weight_breakdown = Data()
# energy conditions
conditions.energies.total_energy = ones_1col * 0
conditions.energies.total_efficiency = ones_1col * 0
conditions.energies.gravity_energy = ones_1col * 0
conditions.energies.propulsion_power = ones_1col * 0
#.........这里部分代码省略.........
示例4: main
# 需要导入模块: from SUAVE.Structure import Data [as 别名]
# 或者: from SUAVE.Structure.Data import propulsion [as 别名]
def main():
# ------------------------------------------------------------------
# Propulsor
# ------------------------------------------------------------------
# build network
net = Solar_Network()
net.number_motors = 1.
net.nacelle_dia = 0.2
# Component 1 the Sun?
sun = SUAVE.Components.Energy.Processes.Solar_Radiation()
net.solar_flux = sun
# Component 2 the solar panels
panel = SUAVE.Components.Energy.Converters.Solar_Panel()
panel.area = 100 * Units.m
panel.efficiency = 0.18
panel.mass_properties.mass = panel.area*.600
net.solar_panel = panel
# Component 3 the ESC
esc = SUAVE.Components.Energy.Distributors.Electronic_Speed_Controller()
esc.efficiency = 0.95 # Gundlach for brushless motors
net.esc = esc
# Component 5 the Propeller
#Propeller design specs
design_altitude = 0.0 * Units.km
Velocity = 10.0 # freestream m/s
RPM = 5887
Blades = 2.0
Radius = .4064
Hub_Radius = 0.05
Design_Cl = 0.7
Thrust = 0.0 #Specify either thrust or power to design for
Power = 7500. #Specify either thrust or power to design for
# Design the Propeller
prop_attributes = Data()
prop_attributes.number_blades = Blades
prop_attributes.freestream_velocity = Velocity
prop_attributes.angular_velocity = RPM*(2.*np.pi/60.0)
prop_attributes.tip_radius = Radius
prop_attributes.hub_radius = Hub_Radius
prop_attributes.design_Cl = Design_Cl
prop_attributes.design_altitude = design_altitude
prop_attributes.design_thrust = Thrust
prop_attributes.design_power = Power
prop_attributes = propeller_design(prop_attributes)
# Create and attach this propeller
prop = SUAVE.Components.Energy.Converters.Propeller()
prop.prop_attributes = prop_attributes
net.propeller = prop
# Component 4 the Motor
motor = SUAVE.Components.Energy.Converters.Motor()
motor.resistance = 0.01
motor.no_load_current = 8.0
motor.speed_constant = 140.*(2.*np.pi/60.) # RPM/volt converted to rad/s
motor.propeller_radius = prop.prop_attributes.tip_radius
motor.propeller_Cp = prop.prop_attributes.Cp
motor.gear_ratio = 1.
motor.gearbox_efficiency = 1.
motor.expected_current = 260.
motor.mass_properties.mass = 2.0
net.motor = motor
# Component 6 the Payload
payload = SUAVE.Components.Energy.Peripherals.Payload()
payload.power_draw = 0. #Watts
payload.mass_properties.mass = 0. * Units.kg
net.payload = payload
# Component 7 the Avionics
avionics = SUAVE.Components.Energy.Peripherals.Avionics()
avionics.power_draw = 0. #Watts
net.avionics = avionics
# Component 8 the Battery
bat = SUAVE.Components.Energy.Storages.Battery()
bat.mass_properties.mass = 50. #kg
bat.type = 'Li-Ion'
bat.resistance = 0.0
net.battery = bat
#Component 9 the system logic controller and MPPT
logic = SUAVE.Components.Energy.Distributors.Solar_Logic()
logic.system_voltage = 50.0
logic.MPPT_efficiency = 0.95
net.solar_logic = logic
# Setup the conditions to run the network
conditions = Data()
conditions.propulsion = Data()
conditions.freestream = Data()
conditions.frames = Data()
#.........这里部分代码省略.........
示例5: main
# 需要导入模块: from SUAVE.Structure import Data [as 别名]
# 或者: from SUAVE.Structure.Data import propulsion [as 别名]
def main():
# This script could fail if either the design or analysis scripts fail,
# in case of failure check both. The design and analysis powers will
# differ because of karman-tsien compressibility corrections in the
# analysis scripts
# Design the Propeller
prop_attributes = Data()
prop_attributes.number_blades = 2.0
prop_attributes.freestream_velocity = 50.0
prop_attributes.angular_velocity = 2000.*(2.*np.pi/60.0)
prop_attributes.tip_radius = 1.5
prop_attributes.hub_radius = 0.05
prop_attributes.design_Cl = 0.7
prop_attributes.design_altitude = 0.0 * Units.km
prop_attributes.design_thrust = 0.0
prop_attributes.design_power = 7000.
prop_attributes = propeller_design(prop_attributes)
# Find the operating conditions
atmosphere = SUAVE.Attributes.Atmospheres.Earth.US_Standard_1976()
p, T, rho, a, mu = atmosphere.compute_values(prop_attributes.design_altitude)
V = prop_attributes.freestream_velocity
conditions = Data()
conditions.freestream = Data()
conditions.propulsion = Data()
conditions.freestream.density = np.array([rho])
conditions.freestream.viscosity = np.array([mu])
conditions.freestream.velocity = np.array([[V]])
conditions.freestream.speed_of_sound = np.array([a])
conditions.freestream.temperature = np.array([T])
conditions.propulsion.throttle = np.array([[1.0]])
# Create and attach this propeller
prop = SUAVE.Components.Energy.Converters.Propeller()
prop.prop_attributes = prop_attributes
prop.inputs.omega = prop_attributes.angular_velocity
F, Q, P, Cplast = prop.spin(conditions)
# Truth values
F_truth = 166.41590262
Q_truth = 45.21732911
P_truth = 9470.2952633 # Over 9000!
Cplast_truth = 0.00085898
error = Data()
error.Thrust = np.max(np.abs(F-F_truth))
error.Power = np.max(np.abs(P-P_truth))
error.Torque = np.max(np.abs(Q-Q_truth))
error.Cp = np.max(np.abs(Cplast-Cplast_truth))
print error
for k,v in error.items():
assert(np.abs(v)<0.001)
return